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We consider bosons ofEuclidean R* that are minimally coupled to an external
Yang—Mills field. We compute the logarithmically divergent part of the cutoff regu-
larized quantum effective action of this system. We confirm the known result that
this term is proportional to the Yang—Mills action. We use pseudodifferential op-
erator methods throughout to prepare the ground for a generalization of our calcu-
lation to the noncommutative four-dimensional Moyal pI&ﬁ‘gWe also include a
detailed comparison of our cutoff regularization to heat kernel techniques. In the
case of the noncommutative space, we complement the usual technique of
asymptotic expansion in the momentum variable with operator theoretic arguments
in order to keep separated quantum from noncommutativity effects. We show that
the result from the commutative spaBé still holds if one replaces all pointwise
products by the noncommutative Moyal product.2005 American Institute of
Physics.[DOI: 10.1063/1.1839277

I. INTRODUCTION

In this paper we study the determinant of certain differential operators. Such determinants
naturally arise in quantum field theory at the one loop level. As the determinant of an operator on
an infinite dimensional Hilbert space is not apriori well-defined object, one must choose some
regularization scheme. The latter means generally the choice of a recipe for how to replace the
formal expressions by something that is both amenable to a rigorous definition and close in its
properties. In our case of the regularization of determinants, a common starting point is the
well-known identity

log detA=TrlogA, (1

which holds for(finite dimensional matricesA. The task is now to give meaning to the trace on
the right-hand side, since the operators of interest do not have a finite trace in general. In this
paper, we restrict the trace to run over a subspace of our Hilbert space only. Loosely speaking, this
subspace is spanned by wave functions that have a momentum expectation value smaller than a
certain cutoffA. The precise definition will follow below. It is known that the cutoff regularized
logarithm of the determinant, now viewed as a functiot\ptontains a term that scales like 1dg
for large A. This term is closely related to the Wodzicki residue for the operator under consider-
ation, a quantity that is of interest in the study of infinite dimensional geometry, see Ref. 15 for a
recent review.

Motivated by the observatidhthat for fermions minimally coupled to an external Yang—Mills
field, the logarithmically divergent part of the cutoff regularized logarithm of the determinant of
the (massivé Dirac operator is proportional to the corresponding Yang—Mills action, we consider
the case of bosons in an external Yang—Mills fieldRsh With our work, we confirmed that the
above result also applies to the bosonic case. The former result was proposed to be interpreted in
two ways. On the one hand, the spectral action prinf:iptates that the spectrum of the Dirac
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operator should provide exhaustive information about the complete bare action including the
Yang—Mills expression. On the other hand, it is known that the logarithmically divergent part plays
a critical role in the selection of the finite part of an effective action because of its behavior under
rescaling of the regularization paramet&r From the latter viewpoint, it is desirable that the
logarithmically divergent term in the regularized effective action produce expressions that occur in
the complete bare action already.

To understand the connection between these two interpretations, it is interesting to consider
the case ofscalaj bosons coupled to an external Yang—Mills field.

It is generally accepted that space—time might lose its smooth properties at very small scales.
One possible mathematical framework for this is noncommutative geoﬁfélmyare interested in
a particular example, the four-dimensioridD) Moyal plane%0 also known as noncommutative
flat space}Rf;. Roughly speaking, the 4D Moyal plane differs from its Euclidean counteRfairt
that there is an uncertainty relation for the simultaneous measurement of coordinates coming from
the nonvanishing commutator

[X*“,X"] =10,

Herex*, u=1,...,4 are coordinates &f* and® is some(antisymmetri¢ matrix. In this paper we
take ® to be proportional to the constant symplectic matrix, see(Eg). We refer to Ref. 5 for a
treatment of Lorentz covariant generalization of this equation.

Although the results of our analysis for the case of bosons on the commutativeREpace
not new and can be found already in deWitt's bdobyr consistent use of pseudodifferential
operator methods technically makes possible the generalization to the noncommutative Moyal
plane. We refer to Refs. 18 and 11 for a generalization of heat kernel regularization calculations to
the noncommutative torus and the Moyal plane, respectively.

The remainder of this paper is structured as follows. Section Il sets up the notation used in our
work and states the results in the form of two propositions. Section Il provides the necessary tools
from the theory of pseudodifferential operators. The proofs of the statements from Sec. Il can be
found in Secs. IV and V, with detailed calculations postponed to the appendix. Also, Sec. IV
contains additional arguments that make contact with the case of fermio @amd to an
alternative regularization scheme, the heat kernel regularization. Section VI concludes with what
we consider to be the lessons from our calculations.

II. NOTATION AND STATEMENT OF THE RESULTS

We consider the Klein—Gordon operator with minimally coupled external field on the four-
dimensional flat Euclidean spa&¥, given by

(a=DADA . = (3 +ieAY)(d, +ieA,) = #d, + ied"A,, + 2ieA“d, - @AFA,,
=+ ied*A, + 2ieA 9, — EA*A,,. (2

Here,u=1,...,4 are théEuclidean indices ofR*, d,=3/dx*, andA,, are gk-valued Yang—Mills
fields onR*. The bosonic wave functions are elements of the Hilbert space

H=LRY @ CN

where the last factor carries aygtepresentation from the external Yang—Mills fields. As an
unbounded operator i, [y can be defined on smooth functionsihby its formal expression

and then extended to a self-adjoint operator. We assume the Yang-Mills Aigittsbe regular,

i.e., to be smooth and to fall oftogether with all their derivativesat infinity like X727, e>0.

The latter assumption ensures that all our spatial integrals below will converge. Also, for regular
A, the self-adjoint extension dfl, can be computed from that &f,. In what follows, we will

not distinguish between the formal expressionlity and its self-adjoint extension.
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We consider the cutoff regularized logarithm of the determinant of the massive Klein—Gordon

operator
—Op+n? - g+ n?
Sy(A) := TrA<Iog<A—2> - Iog(o—z)), ©)
A2 A2

where the cutoff regularized Hilbert space tracg Sums over states with momentum bounded by
A. More precisely, iD is an operator ofi{ and Tr denotes the operator trace¥nthen the cutoff
trace is defined by

Try D := Tr{8(A?+ Oy)D}, (4)

where 6 is the Heaviside step function. As is well-known, the expres$Broccurs in quantum

field theory as the one-loop effective action. Using the formal identity log det=Tr log, it can be
viewed as the generalization of the determinant to operators on an infinite-dimensional Hilbert
space.

The parameter\, has been introduced to balance physical dimensions. It also provides a
useful tool for cross checking since in the result of our calculations, it should cancel. Moreover, in
the definition of the regularized determinant, we have subtracted a term containing the free Klein—
Gordon operator as a reference. Whereas this term is needed for turning the expression under the
trace into a pseudodifferential operator, it also comes in—at least in the corresponding expression
for fermions—when interpreting the determinant as a subsummation of the one loop diagrams in
the Feynman path integr%ﬁ.

The regularized determinafB) has an asymptotic expansion Anfor large values ofA as

Sy(A) = c(AMAZ + ¢y (A M)A+ Cog(A,m)log A + Co(Am) + -+, (5)

where the dots indicate terms that vanish at least liké i/ the limit A — .

We are interested in the coefficieqifg(A, m) = Cjpq(A).

Proposition 11.1: For the regularized determinant,@) defined as above, the coefficient
Ciog(A,m) is proportional to the Yang—Mills action of A

1
Ciog(A) = 96,2 J| . d*x try(F#'F ,,), (6)

wheretry is the matrix trace ingly and the curvature [, of A, is given by

Fu=d,A,— A, +ielA,A,] (7

The proof is contained in Sec. IV A. Note that the numerical factor in froft“6f,, differs from
the one obtained in Ref. 4 Eq&4.16, etc., by%. By the considerations below, this can be
understood as coming from the usage of a nongauge invariant regularizati®A9r However,
the latter allows a straightforward generalization to the noncommutative Moyal plane.

It is well-known that

(Dp)?=1,0,-iec-F, (8)

where Dp=y*(d,+ieA,), o-F=3;0""F,,=5¥*y’F,,, and y* are the four-dimensional gamma
matrices, i.e., &K 4 matrices that satisfy

Y+ Yy =29, 9

n*" being the Euclidean flat metric. Using this identity, we are able to rederive the result of Ref.
14 concerning the determinant of the Dirac operator. This is demonstrated in Sec. IV B. Our
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computation has the advantage of avoiding extensive calculations involving the gamma matrices
Y

It is at first sight surprising that the nongauge invariant definition of the determinant yields a
gauge invariant logarithmically divergent part. It is therefore natural to consider the manifestly
gauge invariant expression

M) 10

< —Op+m? -
S\(A) = Tria Iog(#) -Tr, Iog( 2
0 0

where in the first trace, the cutoff is taken with respect to the opefagorather thanl,. As
before,S,(A) has an asymptotic expansion,

Sy(A) =T(AMAZ + B (A M)A +Tog(Am)log A +Eo(Am) + -+ (12)

the dots subsuming terms scaling at least liké\ 1A calculation in Sec. IV C reveals that the
coefficientiog(A,m) =CTg(A) in (11) equals half of the corresponding expressioriniA),

Tiog(A) = 3Ciog(A). (12

This result agrees with the one obtained in Ref. 4.

A widely used alternative regularization of the determinant of a differential operator makes
use of theZ-function and the asymptotic expansion of the trace of the heat kernel operator. We
want to compare our coefficient with earlier results that have been obtained with these fhethods
[see also the review articles Ref. 1, and references therkinthis approach, one considers
asymptotic expansions for the trace of the heat operator,

K(f,D) = Tr2(fe'®) =t 2ay(f,D) + t32a,(f,D) + -+ +a,(f,D) + --+ , (13)

for smallt, wheref is some function oR* that serves as a regulator for the spatial integrals. The
rightmost dots indicate terms that fall off at least linearly.iAs the heat trace must be integrated
on the positive axis together with the functigrthe logarithmically divergent contribution to the
heat kernel regularized trace is given by the coefficiasif,D). For the comparison of this
coefficient to our result, let . (f,A), etc., be the coefficients in the expansionS{A), now
spatially regularized in the same way Kéf,D). In Sec. IV D, it is shown that the coefficient

Cog(f,A) in the asymptotic expansion 'éf\(A) differs from the corresponding expression obtained
via heat kernel regularization methods by a term proportionat’to

~ 1 —Op+m?
~Cog(F.A) + 32ﬂ2m4L4 d*x f(x) = a"(f'zA\—é)'

(14)

The additional mass term can be traced back to the usage of the reference ogggator-in (3).
The calculations using the heat operator can be generalized to the noncommutative Xatatus
the noncommutative Moyal plaréThe only change one encounters is that in all expressions, the
commutative product of functions must be replaced by the noncommutative praduct

The main part of our paper is devoted to the study of the case of the 4D Moyal plane as the
underlying (noncommutative “space.” In this case, the algebra of functions his furnished
with the (honcommutative Moyal-Weyl productx:=x*q. The latter is defined by the integral
formula

Fag = — J f dy d'e 0V (x - 102g(y), (15)
(277)4 R4 J R4

where® is a 4X 4 matrix defined by
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o 1,
0=4 (16)
- }12 O
for the real parametef. In our calculations we do not use asymptotic expansions of this product
in powers ofé.
On the Moyal plane, we consider the generalized Klein-Gordon operator

Of=0"d, +ie("A,) * +2ieA“* d, - (A x A) x, (17)

wherefx is a short-hand notation for the operator thamultiplies smooth wave functions K
from the left by the(smooth function f. We defineSﬁ(A) and cﬁ)(A,m) in analogy with the
formulas(3) and (5) above. Then, our main result is the following.

Proposition 11.2: For minimally coupled bosonic fields on the (noncommutative) 4D Moyal
plane, the above formula (6) holds with the commutative products replaced by the noncommutative
Moyal-Weyl product, i.e., we have

1
Ciog(A) = 962 JR4 d*x tryF "« FO (18)

where

0 _
F,=9,A,— aA,+eA,Al. (19)

IIl. PSEUDODIFFERENTIAL OPERATOR METHODS

In our work, we deal with a restricted class jp$eudodifferential operator6’DO) which
suits our purposes. The statements below may be found in Shubin’s bk consider?DOs
that act on smooth and compactly supported wave functioas|[x=(x*), u=1,...,4, and like-
wisey, p describe points irR% xp=2,x“p# denotes the scalar produ¢t| is the length of the
vectorx]

d*p

(Au)(x) = , 2

f d*y of Al(x, p)u(y)eP*y,
R4

where thesymbol o{A] of A is a smooth function that allows amsymptotic expansiom p
according to

O-[A](X! p) -~ E O'm_r[A](X, p) .
r=0

Here,~ means that for each the finite sum=;_,o,[A] approximates{A] up to a function that
falls off at most agp|™*V for large|p|,

< Cop(1+[pf)lmeria

oxap ( ol Al(x,p) = 2 o [Al(X p))
r=0

for all multi-indicesa=(ay, ... ,as), B=(B1, ... ,B4), Where

L [0\ d |
) el
|a|=ay+- -+ +ay, andC,z are constants. The numberabove is called therder of A. For a given
symbol, there are many different asymptotic expansions. One particular choice is the asymptotic
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expansion in terms dfomogeneous symbatg,_[A], i.e., smooth functions that in addition satisfy
ol [Al(x,Ap) =A™ Toh _[Al(x,p) for|p|=1,A>1.

The first terma[%[A] in an asymptotic expansion in homogeneous summands is termguithe
cipal symbal

An asymptotic expansion encodes the information of a given symp®] up to an additive
function that falls off inp like a Schwartz test function. This piece of information will be sufficient
for our purposes.

While the expansion in homogeneous symbols is appropriate to discuss invariant notions such
as the residue of DO, the expansions obtained from recursion relations in the computation of
resolvents of operators are not of this type in general. The two types, however, are related to each
other through a finite resummation at every order of the infinite sum.

The action of thelDOs considered here can be extended to smooth functions, leading to the
useful formula

o[ A](x,p) = e *PAEP.

For the producAB of two WDOs A and B with respective symbols{A] and o[ B], one has
the following asymptotic expansion of the symbol:

—i)led
= dpol Al(x,p)dalBI(X,p), (20)

ol Al * o] B](x,p) = o[ AB](X,p) ~ 2,

. al

where the sum runs over all 4-indicasand we have used the notatiat= 4! - - a,!. We will
use* whenever we mean this product of symbols, in contrast to the noncommutative product
defined later on.

InterpretingA as an operator in the Hilbert spac&R*) ® CN, we can compute the trace Af
from its symbol according to

Tr(A) = f dp f d*x try ol Al(X, p)
" J e myt ) OISR

where tg, denotes the matrix trace over thgglart of the symbol.
For operatordA that do not have #finite) trace, one considers the cutoff trace
d'p

Tra(A) =
rA( ) lpl<A (277)4

f d* try ol AJ(X, p).
R4

Clearly, this coincides with the previous definition of the cutoff regularized trace(4gq.

The above expression has an asymptotic expansidn as can be seen from the asymptotic
expansion of the symbei{ A] in homogeneous symbols. In this case, there appears a term scaling
like log A. On the other hand, thé&/odzicki residu€ of the operatoA is defined as the angular
p-integral and the spatial integral of the coefficiefiiA] in the homogeneous asymptotic expan-
sion,

1
RegA) = @ f - dq, fl . d* o™ [Al(x,p),

whenever the integral exists. It is known that for compact spatial manifolds this quantity deter-
mines completely the factor in front of the ldgterm in the asymptotic expansion of ,TA). By

abuse of notation, and motivated by the above observation, in our calculations we will use the
expression Rés ) to mean the factor in front of the lofy term in the corresponding cutoff
regularized trace.

Downloaded 09 Feb 2005 to 136.152.180.178. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



032301-7 Yang-Mills action from minimally coupled bosons J. Math. Phys. 46, 032301 (2005)
IV. THE CASE M=R*

A. The logarithmically divergent part

In this section we compute the logarithmically divergent part of the bosonic effective action
on R*. We define the regularized bosonic action as

Sy(A) = Tr,«log(%) - Iog(M». (21)

2
0 AO

We use the following expression for the logarithm:

Lds B
log(1+a) = J S(1-(1+s3 Y (22)
0

and recall the definition for the regularized trace of a pseudodifferential operator

- d’p 4
Try(a) := Jp|sA (277)411{4d X try o{a](x,p) (23

o =55 -l =)
N fm@w) H4d4f _””< K”S( Dfm ')H
4550

As shown in the first section of the Appendix, the symbol of the resolvent pmust satisfy the
following recursion relation:

1 c . -
ol (el + 04 ™ (px) = SPS 22 pz(DA +2ip,DR)al(cyl + 00 1(p.X)-

Its formal solution is given by
ol (cyl + 00 (%, p) = (cyl +Co(= p? + Op + 2ip#Da,)) M1,

which can be understood as defining an asymptotic expansion, see the Appendix for details. In
particular, for our values of; andc,, we derive

_ -1 * 2\n
o{(Hs{%ﬁ—l]) ]~2< &40 >n+1(DA+2ipMDﬁ)”1.
=0

2 snf s
1-s+—5+-5p
AO AO

Here and in all what follows, the 1 on the right-hand sides) means that the operatdrs,, Dy,
should be applied to th-dimensional constant vector.

Inserting this expansion into the integral and noting that the second symbol just cancels the
first term in the expansion we then have
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ol ) ]

O

X f d*x try(Ca + 2ip,,DA)"L. (25)
]R4

In the first section of the Appendix we will expand explicitly the termg26) and pick out the
logarithmically diverging ones. Setting all the relevant terms together then gives

—Op+m? - O+ n?
Reg log A2 —IogT
0 0
:——mf d*x tryO] LJ d* tr D2+im2 d* try O +if d*x try 12
R4 NTAT 1672 ) NTAT 82 NTAT 1272 ) s N=A

ey f d*x try DACIAD A, — 187 f d*x try(CJ4 + DADADA,Day, + DATIADA,)

_l 14
= 48712(JR4 d*x try DAOAD A, — LA d*x try DADXDA,,DA#) (26)
A short calculation shows that the terms under the trace are eq(ed/@F**F ,,, so we finally
get the result
_DA+m2) <_D0+m2)) 62
Reg logl ——5— | -lo = d* tryFHF 27
5( g( A3 N Az 96m2 Jpa N H 27

which proves Proposition 11.1.

B. Comparison with fermion calculations

To incorporate fermions, we have to extend the Hilbert space. We t4kg,on=L2(R%)
®Lco|or® C‘S‘pm, where the last factor carries a representation of the Dirac gamma majtixes

We begin by computing the square of the Dirac oper&toFirst some definitions
Da,=d,+ieA,,
Da=y4d, +ieA,).
A short calculation yields the well-known formula
(Da)? =140+ 57 [DawDal = 1s0a +ieo - F.
Here,1, denotes the X 4 unit matrix and
o-F:= %U'WFW: %y“y”FW
for the matricess*”:=[v*, y”]. We use the above identity to obtain
(—iDp+im)(=iDp—im) = - (Da)?+ P = - 1,0, —iec - F +n?.

Taking the logarithm on both sides, for the left-hand side we arrive at
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—iDA+im>(—iDA—im) (—iDA+im) (—iDA—im)
| =logl| —>—— | +log| —>——
°g< Aq Ao N A, 9N, )

while the right-hand side gives

|0g(—l4DA—iea'-F+m2):|0g<h(_DA—A2+m2))(l4—ﬁa-F)
0 — A
i (h(—DAHrF))

ie
+ Iog(h “TO.+m F) + commutator terms.
— A

The extra commutator terms can be computed from the Baker—Campbell-Hausdorff formula.

It is known that on compact manifolds the Wodzicki residue vanishes on commuftawes.
therefore expect that from the above expression, the commutator terms will not contribute to the
logarithmically divergent part of the regularized trace. In the second section of the Appendix it is
shown explicitly that this is indeed the case. Rather than using integration-by-parts arguments, this
is readily seen from the fact that thigtrace overo-F gives zero. Also, the pertinent contribu-
tions from the first two terms of the right-hand side are calculated in the Appendix.

Furthermore, from Langmann’s resdftsve know that T log[ (=il o+im)/A,] is indepen-
dent of the sign ofn, so we have

—iDp+i — O+ e
2Try, Iog(%) =4Tr, Iog( 22 ) * o log Af d* tr(o -F)?
0 0 R4

+ terms finite inA,

where the trace tr runs over both th,  and theC;‘pin parts. Performing the trace over the
y-matrices yields

tr(o - F)?= = 2t FHF .

The result is then

—iDap+im

—DA+m2> 62

- logA | d*tryFAF,,+ -
AZ 1672 09 jw N

Try Iog( ) =2Try Iog(

0

(| dwtrgEmE, - —— | d*tr F&F, JlogA+ -
(48772 o O I T e | O 10

- J
=———logA [ d*tryF*'F,, +terms finite inA,
2472 09N ) OXINTT

in agreement with Ref. 14.

C. Dependence on the regularization scheme

So far we have been looking at the cutoff regularized determinant
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_ 2 _
Sy (A) :TrA<Iog<%> - Iog(M)). (298

2
0 AO

As the cutoff in this regularization is taken with respect to the reference opérgtdhe above
expression is not manifestly gauge invariant. It is thus surprising that the coefiigigay turns
out to be gauge invariant.

One could use the spectral projection with respecttp instead, but again the resulting
expression would fail to be manifestly gauge invariant now because of the reference term
log[(-Cp+ mz)/A(z)]. The latter had to be included to make the calculations tractable by the meth-
ods of classical?’DOs.

Of course, there are gauge invariant regularization schemes such as heat kernel regularization
(see the review articles in Ref. 1 for recent developments in thig fie&dlily available. However,
cutoff regularized traces seem to be closer to physical intuition.

An acceptable, manifestly gauge invariant expression would be

_Do+m2
2

0

~ -0 2
S\(A) = Tria |og(%) -Try Iog< ) (29)

0

where

- _ 2
TrEA Iog(%) = Tr{ PMDMIOQ(%) }

0 0

is defined using the spectral projectioRg([J,) := A(A2-[1,) of [1,, whered denotes the Heavi-
side step function that is zero for negative arguments and equal to 1 otherwise. It turns out that

§A(A) has an asymptotic expansion as

Sy(A) =EA)A? + T4 (A)A +Tiog(A)lOg A + -+ . (30)

The dots indicate terms that are finite in the larfgdimit.

In this section we want to compare the coefficigp(A) of the logarithmically divergent part
in the above expression to the coefficiept(A) computed earlier.

A short calculation reveals how to proceed,

—-Op,+n7? -y +n?
Triialog —2— - Tr{olog —>—
A g Ag A g Aé
—Op+m? —Og+m? —Op+m? —Og+n?
:TrDO(Io —A o °—>+ Tria— 1o (Io A -lo 0
— g+ m?
+ (TrEA - Tr?o)log 0—2. (32

Ao

Obviously, the coefficient,4(A) receives contributions from three different terms, only the first of
which is given byc,4(A). From the calculation of the pertinent part in the third term, it will be
apparent that the second one in fact does not contrib(g,td). For the computation of the third
term in(31), however, we must introduce an additional regulator that deals with the noncompact-
ness ofR*. Let f be a smooth, compactly supported functionish interpreted as a multiplication
operator or{. Then
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- 4 -
Tr{fa(A2+ Op)log DO—:mZ} :f d p4f f(x)o{e(A2+DA)]a{Iog DO—:mZ} +
Ag 14 (2m)% ) za A§

(32)

The dots indicate contributions from the star product of symbols that are uniformly bounded in
Use has been made of the fact tifatind o-[log(—D0+mZ)/A§] are independent op and x,
respectively.

As a next step, we need to derive an asymptotic expansion for the symbol of the theta
function. We start with the following sum expression for a smooth approximation of the Heaviside
6 function (Ref. 9, p. 248, etg:

0" 0"

1 €
0(x) = ;E rtie S emrp W@l (33

for e>0. The step function is regained in the limdt>. Using this equation, we derive an
asymptotic expansion for the symbol éfA%+1,) as(for details we refer to the third section of
the Appendix

1 A 1 o1
2 — ze — —Jn-Dr2_ 12 ;
oA OA]= o deé U[Z—i(A2+DA)} 2, 1A% = P (Oa+ 2D D)1

As before, for mnemonic purposes, this asymptotic series can be summarized as

ol O(A?+TN1(x,p) = 6(AZ = p?+ Tp + 2ip“Da,)1, (34)

where thex dependence originates from the external fiedds
Combining our results, we find

B _ 2
Tr{fe<A2+ DMOG(DO—:"]Z)} 'Tr{m(A2+ D°)'°Q(DO—:m)}
A2 Ao

1 d’p f . v o o (pz + ) .
= B m? ue
20 ) 2w R4d x f(x) 8" P(A2 - p?)log AZ try{(Ca + 2ip#Da,) "1}

Obviously, we can now drop the regulator

For largeA, the é_-functions cancel the radigrintegration. Therefore, the only contributions
to the logarithmically divergent part in the above expression can originate from terms where the
derivatives of theS.-functions exclusively hit the trace under the integral of the meastpédut
not the factor lof(—-Co+n?)/AZ]. This is only possible as long agr2-1) <3+n (the derivatives
of 8. count twice because of th# in the argument, and the 3 on the rhs comes from the measure
d*p) and hencen<5. Moreover, since the angulprintegration over an odd number of factqrs
gives always zero, the=5 term cannot contribute either.

As shown in the Appendix, we can now expand the powéig+2ip#Da,)"1 for n<4,
perform the angulap-integrations, substitute?—u and use partial integration to get rid of the
derivatives of thes-functions. We arrive at
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- o+ n? - o+ n?
G Iog( —10\2 ) - Trio Iog( —22 )
0 0

—ifmdulo (u+mz)5(A2—u)u(1—1)f d* tryO 1+ifodulo <u+m2>
=162 ) g A(z) 5 o4 NEA 1672 . g AS

1 2 1 1 “ u+ mé N
X5E(A2—U)(§—§+6)L4d4xtrNDil+ﬁ£ du Iog( A2 >6E(A2—u)(—§+é)

1 (7 u+m?\1
X | d*try DAOAD 1+—f dulo ( )—5EA2—u
fw NEATATAT T 1602 ), g A2 )6 ( )

X f d*x try DADADA,Da, L + -+
R4

1 AZ+m? . "
:—96772Iog AS HAdxtrNDADADAﬂl
1 <A2+

0
9672 O\ AZ

11 lo (A2+mz>f d* try FAF, +
T 206m2 Y A2 ) ) e N Y ’

+

m?
f d*x tryDADADA,Da,L + -+
]R4

where the dots indicate finite or polynomially divergent contributions.

Finally, we will turn back to the second term {i81). The difference as compared to the
previous calculation is that now the symbol of the operator under the traces has an asymptotic
expansion that is a power series inpl/Therefore, in contrast to the above, no logarithmically
divergent term will occur in a largd expansion.

Combining these results with our previous expressiorcfgtA), we find

~ 11 1
C|Og(A) = 5@ y d*x try FF = EC|09(A). (35)

D. Comparison with heat kernel regularization

In this section we want to compare our results with previous ones in the lite¥attiobtained
by heat kernel techniques. For a given differential operBtowe consider the trace of the heat
operator forD,

K(t,f,D) = Tr(feP),

where the auxiliary smooth functioffx) is introduced to make spatial integrals convergeRén
We write the effective action foD as

“dt
S=—f d—K(t,f,D).
O t

Here the formula log déD)=Tr log(D) has been used again together with the following formal
expression for the logarithm:

Downloaded 09 Feb 2005 to 136.152.180.178. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



032301-13  Yang—Mills action from minimally coupled bosons J. Math. Phys. 46, 032301 (2005)

* dt
log\ = —f —e™
O t

which holds up to arinfinite) integration constant.
There is an asymptotic expansion for the heat trace-aé given by

Tr(fe™®) ~ > tk"2y (f D).
k=0

Next we define th&-function for D as follows:
{(s,f,D) =Tr(fD75).

Writing the Z-function in terms of the heat trace as

R R
{(s,f,D)—F(S)JO dt t52K(t,1,D),

we see thal'(s){(s,f,D) has simple poles at the poings(n—k)/2 and the complex residue at
s=(n-k)/2 is given by
Res-h-12(I'(s)4(s,f,D)) = a(f,D). (36)

From the asymptotic expansion of the heat trace and the integral formula for the effective action
S we see that the logarithmically divergent part is given whem so we are interested in
computing the coefficiert,(f,(-CIa+m?)/A2). In our casen=4.

The first task is to compute thiefunction for the operatof—[J5+ m2)/A§. From the definition
of the {-function we have

_ ) 4 _ -s
(502557 [ e et (557 o
0 ™) JR* 0

We next use the expansion
- [(s+r)
(a+ X)"S= 2 ( )r (r+s)Xr
r=0 rtl'(s)
to write the symbol of—CI,+m?)/ A3 as

{(— Oat+ n?)'s} _(p2+ P = Cp - 2ip”DAﬂ>'5
T\ Az ) A2
0

-3 e

0 r'f( ) 0 2(s+r)(m2 DA 2|pMDA,u.) 1.
r=i

Splitting the integration in thé-function into two parts we then have

_ 2 4 _ 2\ -s
g(s,f,M) :f d’p d* f(x)try UKM) }(x,p)

A2 pl=1 2m*J e A

(=1)'T(s+r) ZSJ 3 f dQ, 4
rEO Tany ), PP | ) X

XtrN(mZ_ DA_ 2|p’uDA’u)r1 (37)

Using the fact that under the angular integration odd powers giffe zero we can write
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[r/2]

dQ
f 44 d*x FQtry(MP = Cla = 2ip#Da,)'1 = 2 (= 20)p* d(f,r,2k)
s (2m)7 ) e k=0

for some functions d,r,2k) of f, [, and D4, determined from the expansion O -,
—2ip#Dp,)". In particular, we have

1
- 4
d(f,0,0 3 ZLAd X f(X).
We then find

[r/2]

Oa mz> (-1 AZSI‘(S‘”I 3 22
§<57f,—AO x(s) + ;}) T p| d|p| r+s)2( 2i)%p? d(f,r,2t),

where x(s) denotes the first integral in the rhs 7), a holomorphic function irs. We can
evaluate explicitly thep-integral in the above expression to obtain the following formula for the
{-function:

L1 Marstn) 1

_DA+m2>_ AO
{(s,f,—AS = x(9) + %IZO 5 r S_(Z_Ht)d(f,r,Zt). (38)

There are two parts of théfunction contributing to the residue at0; the gamma function
I'(s+r) and the poles of 15—(2-r+t)]. The first one gives a contribution fo=0 and the latter
one whenr=2+t. From the summation we see thatr/2 so it follows that only the terms with
t=<2 contribute to the residue:

_DA+m2) ( _DA+m2>
f,———|=ResoI'(s){|s,f,———

o1 4T(2+1)1

= x(0) dfOO) % 2+0) 2 d(ft 2,2),

where x(0) is given by

1 1 1
0)=—— d4f d’ f :f 3dlpld(f.0,0 = =d(f,0,0).
x(0) (277)4fp|§1 P , x f(x) . Ip[® d|p|d( ) . ( )

We have thus obtained the following expressiondgff,(~CIx+m?)/A2):

_ 2 t
%(f'M) — E }Md(f'»ﬁ_ 2,2).

A 2 2+

We now compute directly the logarithmically divergent partSafA). For this we need the
following formula:

_ 2 _ ~ r+1
"{"’g( =2 m)"°g< D[zmz)]zg( T P = D= 20y, - ).
0 0 r=1

Note that for this asymptotic expansion, we have divided the recursion forA8)adifferently.
We split thep-integration in the trace into two parts to get
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_|:|A+m2 _D0+m2)>
Try log| f -
A g( ( A% A2

o [r/2] ( )r+1
= finite terms inA + >, >, f Ip|® d|p| A t)( 14t d(f,r,2t)

r=1 t=0

r+1

f |p|3d|p| -d(f,0,0).

The logarithmically divergent part is then given by

2
1 1
A) == A ——d(f,t+2,2) + —m* d(f
Ciog(#) == 2 4 d(f.t+2,2) + o d(1,0,0

so we finally have the result

o)+ 1T 10,0/ =ay(f, (- D + 1PIAD).

Remarks(1) The coefficients ¢f,r, 2k) defined below Eq(37) are given by spatial integrals
over thegl(N)-trace of certain polyomials in the external fields and their derivatives. They can be
easily computed by expanding the power on the left-hand side of the defining formula, using the
well-known expressions for the angulpdintegration of polynomials ip*.

(2) Note that the argument relatireg, andc,,q did not use the specific form of the coefficients
d(f,r,2k). Therefore, it can be extended to a larger class of operators.

(3) Combining Eqs(36) and(38), we have a formula for the calculation of the coefficiemts
at hand. In particular, evaluating the functigfts) for negative integes amounts to the compu-
tation of the symbol of-[J,+m?)' for positive integer powers df The latter can be obtained
from the formula

of (= Oa+m)* 1] = (p? + P = O - 2ip,DR)of (- O+ mA)']
and the symbol of El,+n?.

V. GENERALIZATION TO THE MOYAL PLANE
A. The Moyal plane Rj: generalities

In this section, we want to replace the maniféiti by the four-dimensional Moyal plarié?,
an example of a noncommutative manifold.

For the definition of the latter, one must specimong other things; see Ref. 3 for the
general theory, Ref. 10 for the treatment of the Moyal plane in this conéextoncommutative
associative algebral, the elements of which generalize the notion(srhooth functions on an
ordinary manifold. In the case of the 4D Moyal plane, the algebia taken to include the rapidly
decaying Schwartz test functions &4, while the product of two such elemeritsg is given by
the integral formula

(fxg)(x) = f f dy d* €€V (x - 308)q(y), (39
R4

(2m*

where® is a 4X 4 matrix defined by

@—e(o 12) 40
=01, o (40)

for the real parametef.
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The elements of4 act on the Hilbert space?(R*) by left x-multiplication (see Ref. 8 for an
extension of the above formula to distributipnsor an element e A, we will write the corre-
sponding operator oh?(R?%) asfx. From the integral formul&39) of x, we can see thdix is a
¥DO with the symbol

olf *J(x,p) = f(x— 30p). (42)

Note that the asymptotic behavior bis transferred to th@ dependence of the symbol &%. In
particular, for rapidly decayind, fx is infinitely smoothingl.0

A natural class of functions suitable for the Moyal product is thefzef infinitely differen-
tiable functionsf on R* such that, for a real numberand for every multi-indexx,

(D X)] < Co(1 +x3)(STIaD"2, (42)

s is called theorder of f. For f, g e P and of orders,, s,, respectivelyfxg is again in? and of
orders; +s, (Ref. 12, Sect. ¥

B. Calculation of the logarithmically divergent part

With the commutative product of functions & replaced by the Moyal produst Eq.(39),
we are led to study the following variant of the Klein—Gordon operator

Opgr= 09, +ie(A,) * -+ 26N x 9, — A% A, * i

for any rapidly decaying smooth functiof in the Hilbert spaceH = LZ(R“)@CCO,W Here, the
matrix valued Yang-Mills field#\, are taken to be in the s& above with order strictly smaller
than -4, i.e., to satisfy42) with s<-4.

We will also need the operatdi),’i#, defined by

DAY= d,+ieA, x ¢, ¢ e S(RY).

In analogy with the first section, we consider the cutoff regularized determinarﬁt—ﬁ
+mP)/ A3,

0%+ m? - g+ n?
SU(A) :=Try1 lo A —-lo 0 .
A( ) A g Ag g AS
As before, the trace will be computed from the symbol 01[(0@,‘{+ m2)/A§]. For the latter, we
will need an expression for the symbol of the resolvenfXif Again, this will be obtained via a
recursion relation.
As explained in the Appendix, we find fay, ¢, € C, ¢,:¢,<0 or ¢,=0,

- 1 C
of(ey+ 2R ]0xp) = c-Cp? ¢-c pz( A—120p) + 2AP*DR~1/20p)01(C1 + LR ]
X(%,p),
where Al- ——@p is a short-hand notation for the external fle|A§ shifted by 2@p in their
argumentA? —-®p x)= A(x——@)p) In the derivation of the recursion relation, we have used the
identity*>

POV = [f(- +50) # V0

and associativity of the Moyal product.
From the recursion relation, one readily obtains the formal expression
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©

n
ol (cy+ 00 ™M(x.p) ~ 2 %(Df\(-ﬂm@m +2ip“DR ~1120p)"1-
n=o (C1 = Cop°%)
A thorough investigation reveals, however, that an interpretation of this equation as an asymptotic
expansion inp would be misleading: The dependence through the arguments of the external
fieldsAM(x—%G)p) is superficial in that it goes away under the spatial integral. Therefore, one must
develop different tools to tackle the situation. As shown in the Appendix, the op&gtdefined
by the sum of the firsiN terms in the above series, fdi sufficiently large, differs from the
operator(cl+czD,‘i)‘l by a trace-class operator only. Hence, for the singular behavior of the cutoff
regularized trace, it suffices to consider this oper&gr

Inserting the expression for the symbolRy into the integral formula for the logarithm, Eq.
(22), we find

ds gt
A
( )= 2 |p<A(27T)f ( +S<p2+m2
A2

0

4. 6
n+1J 4d X (a2 0p)
_ 1)) R

+2ip“DR( {1/90p),)"1 + terms finite inA.

Now, for every term in the sum, we can shift tkéntegration by %@p. After this substitution the
contribution to theA-behavior is apparent: It is only the first four terms that can contribute to
c,%g(A). Moreover, the resulting expression differs from the correspon8iiig), Eq. (25), solely

in the appearance of the producin place of the commutative product. As the replacement of the
latter by the Moyal product does not affect the asymptotic behavior in the vapahle conclude

4, 0,y 4
dtry F™" % F

eZ
Clog(A) 6 2 (43)
R4

whereF!  is defined by

Fo,=—ie[DZ,.D4,]-

This proves the claim of Proposition 11.2.

VI. CONCLUSION

In the first part of our paper, we considered the regularized determinant of the Klein—Gordon
operator], with minimal coupling onRk*. For the regularization, we restricted the Hilbert space
trace to run over states of momentum below some cutoff

Although similar results have been obtained before, we choose to present here an approach
that consistently uses the pseudodifferential operator methods to prepare the ground for calcula-
tions on a particular noncommutative manifold.

A useful formula for the calculations with symbols of pseudodifferential operédt®B®0) is
given by

ol f(CW](x,p) = f(= p?+ Da+ 2ip“Da,)1 (44)

for any functionf of the Klein—Gordon operatdrl,. This formula originates from a recursion
relation for the symbod{ f(C,)]. It is to be understood as defining an asymptotic expansion of the
symbol for largep.

Using this asymptotic expansion we could indeed confirm that the cutoff regularized trace
does have an asymptotic expansion in the cutofis in Eq.(5). Although our approach did not
use a manifestly gauge invariant regularization, the term scaling lika liogthe regularized trace
of the logarithm of the massive Klein—-Gordon operator was found to be gauge invariant. However,
the numerical coefficient in front of this expression differs from that obtained via manifestly gauge

Downloaded 09 Feb 2005 to 136.152.180.178. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



032301-18 J. Loikkanen and C. Paufler J. Math. Phys. 46, 032301 (2005)

invariant methods™ by a factor of -2, see Eq$12) and (14). This difference can be verified
through a comparison of our approach to heat kernel regularization. It turns out that this argument
does not rely on the particular structure of the operaigy cf. the use of the functions(fi,r, 2t)

in Sec. IV D, so we expect it to hold even for more general operators as well. It would be
interesting to understand this feature in more detail. Also, we propose a gauge invariant version of
the cutoff regularization, Eq10), which reproduces the result of Refs. 4 and 11.

Recently, zeta functions have been found to show a pole structure on noncommutatie torus
that differs from the commutative case. It would be interesting to see a similar effect for the Moyal
plane by means of the development in Sec. IV D.

In the second and main part of our work, we considered the generalized Klein—Gordon op-
erator for minimally coupled bosons on the four-dimensional Moyal plane, a particular example
for a noncommutative geometry. The difference to the previous case is that now the external
Yang—Mills fields act on wave functions by the noncommutative Moyal multiplication. This leads
in a natural way to the generalized Klein—Gordon operﬁrAs it turns out, the machinery of
WDOs is still applicable, wit44) generalizing to

ol f(ORIP) = (= P?+ D wzep + 2P*DAcw20p,)1- (49

Here,A(-—%G)p) denotes the external fields shifted by the amoun%@p.

From this formula, one might think that the ngadependence in the external fields leads to
an improvement in the decay properties of the symbol for IgxgEhis point of view is however
misleading when one wants to draw conclusions for the asymptotic expansion of the regularized
trace: By a change of variables, tipedependence in the external fields disappears under the
spatial integral of the trace. This fact comes solely from the noncompactndss tif may be
viewed as another manifestation of the UV/IR mixing. A similar effect can be seen for instance in
the example of an infinitely smoothing operatoridnhat has a nonvanishing trace, see the end of
the fourth section of the Appendix. Therefore, on noncompact manifallmmutative or non-
commutative, arguments linking the asymptotic expansion of the regularized trace of an operator
to the expansion of its symbol must be taken with caution. For our case, we propose to use the
asymptotic expansion ip of the shifted symbol

ol f(OY](x+ 30p,p)

instead. This proposal is justified rigorously by operator theoretic arguments which show that the
difference between the original operator and a certain truncation of the asymptotic expansion of
the above shifted symbol is trace-class. Hence, it does not contribute to the divergent part of the
regularized trace and we can safely exchange the full symbol by its truncation. This argument can
even be extended to the commutative case, thereby proving that the coefficient of thpdogof
the regularized trace is indeed given by thencompagtWodzicki residue. The latter observation
now can be used to explain why the expressiorcfgyis a gauge invariant quantity: Since a gauge
transformation conjugates the Klein—Gordon operator by some unitary operator, the fagf, tisat
gauge invariant is equivalent to the vanishing of the Wodzicki residue on commutators.

To conclude, we have seen that the method#DOs are a powerful tool for the investigation
of the case studied here, yet they need to be modified in the described way for the case of the
noncommutative Moyal plane. It would be interesting to see what modifications are necessary to
study the coupling of gravity to the bosons through a varying metrid nThis is presently under
investigation.
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APPENDIX: DETAILS OF THE COMPUTATIONS

Computation of ¢4 (A)

We are using the following convention for the Klein—-Gordon operator:

[a=D4Da, = (¢ +ieA")(d, +ieA) = #J, +ied"A, + 2ieA, ¢ - EAPA,
=g +ied“A, + 2ieA, — EA*A,. (A1)

Recall the definition of the symbal{a] of a pseudodifferential operatar

4

d’p

ra (2m)*

(@h(x) = f dy eP*Vofal(p,f(y). (A2)
R4
In the computation we need the symbol of the resolvent of the Klein—Gordon operator, i.e., of
the operator(c,l +c,[0,) L. To determine an asymptotic expansion for this symbol we start with
the following expression:

(cyl +c0p)af(x) =yl +cy(d#9, +ied*A, + 2ieA, " — EA*A )

xf ﬂf d*y dPYgfal(p,x)f(y)
R4 (277)4 R*

d* .
- f 4 (275‘{[ 4 d4y ép-(x-y)(cl| + CZ(_ p2 - ZGAﬂp“ + ‘9”‘9/1
R R

+ied“A, + 2ieA, ¢ + 2ip 0 — €A*A)) ol al(p, 0 f(y). (A3)

Next replacinga by (¢, +c,[J,) *a we get

d* ;
i Ay P e o 2en
R

(cql + e (¢l + ¢, taf(x) =af(x) = J
R4
+ 349, +iedtA, + 2ieA, " + 2ip " — €AFA,))

Xaf(cyl + ) al(p,xf(y)

d*p o)
= J‘IA (27T)4JR4d4y dP-xy g{a](p,x)f(y) (A4)

n

So we have

(Cyl +Cy(= p? = 26A,pH + 39, +ied"A, + 2ieA,d* — €AFA, + 2ip ,d*)) o] (c;] + 004 al(p,X)
=ofa](p,x) (A5)

which can be written as
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(cql = cop?)ol(cyl + ) al(p,X) + Co(a + 2ip,DA) ol (cil + ¢ ™ al(p,x) = ofal(p,x),
(AB)

giving us the recursive relation

_ C . _
ol(eyl + e ™ al(p,x) = solal(p,x) = ——2—(0a+ 2ip, DAl (cyl + 000 al(p,X).
Ci—Cp C1—Cyp
(A7)
We can now get the desired asymptotic expansion by sedtiry,o{a]=1,
o o (1S .
ol(cy) + 00 (P ~ 2 > (Ca+ 2ip, D)L (A8)
n=o (C1 = Cop9)

Next we evaluate explicitly the terms contributing to the logarithmically diverging part in the
expansion(25) of the effective action. When taking the angular integrals the following formulas
are used:

(Pp*) = 30%7,
<pﬂ1p#2pﬂv3pﬂ4> = 2l4 p4( ,7M1M2 7}M3M4 + 7]M1M3 77M2M4 + 77M1M477M2ﬂ3)'
where the brackets denote integration over the unit sphelé,ithat is

1 d*p
(f(p)) = ﬁjm (27r)45(|p| = Df(p). (A9)

Also the angular integral over an odd number of componefitss zero. Thes-integrals in the
expansion can be evaluated exactly using the formula

f . (A10)
o Bl+sa™  n(l+a)

which holds forfRe a>0. The effective action can now be written as

—DA+m2 _D0+m2
Try| log A2 -log Az
0 0

1 < 1 _

=- anl 1 d|p|||0|3mfR4 d4xf§ dQptry(Ca + 2ip,,DA)™ + const, (A11)
where the constariin A) term arises from the integration of the symbol over the regjips 1 for
which the asymptotic expansion is not valid.

When expanding the integrand in termsppfthe leading term is of the ordg® 2" times a
term of order at mosp" coming from the angular integration—so the highest order term is of
orderp®™. For the terms contributing to logarithmic divergences of the effective action the leading
order must be larger than or equal to —1, so the relevant terms in the expansion above are terms of
order up to four. To find the parts contributing to the logarithmic divergence we derivate the terms
in (A11) with respect toA and then pick the terms proportional toAL/We denote by, the nth
term in the expansion. Writing the expansions of the first four terms explicitly we then have
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A, 1 A3 A2 ( <1>>f
Fi__ = 0 20 | diytradal=—| A - m2 +0 d™ tryCal,
IA 8772ASA2+m2 ot XUNLA 872 A2 XUNLA

al, 1 A3 f 1 AS f

Moo 2 N - | O

A 8R2AZHmP)2 ) INTAT T g2 (A2 )2 ) O N
1

1
=————| d*tryd31+-- +—m2 f d*tryCal + -+
87122AL4 XUN=A g2 A ) NA

dl; 1 A3 f 1 A° f
= = — | d&Tr P+ ——————| d*tryd?
N 8w 3(AZ+mP)3 ) 4 NTAT 4m23(A2+ M) ) NA
1 AS .
- - M
+ 8772 3(A2+ m2)3fR4d XtI’N(DAl:lADAM)
1 1 1 1 1 1
=-—0 k=== d*tr D2+ +——f d*x try(DACIADAL)
8’ ( ) 47723AL4 NEAT 872 3A J N(DATADA)

Ay 1 A3 4_ p2(ar3 2 2 a2
(7_[\ __Qmﬁ#d&tm(DA_A (3DA+ DADKDADAM"' DA,uDADA,u) +§A (DA

+D,DADA,Da, + DXDADAM))

=— =2 |  d*try(OF + DXDADADA, + DATIADAL) + -

Comparison with fermion calculations

We now compute the traces of the relevant terms in the identity

log(—1,(0x+ m?) —ieo -F) = Iog(lél(_DA—A;mz)) + Iog(}l4 - i—emzo : F)

o —Oa+
+ }{Iog<l4w),log(l4 - i—ea : F)}
2 A§ —Op+m?
Sl o 55
12 A3 A
Iog<14— ﬁ(r : F)” + {Iog(h— ﬁa’ : F),
A A

Y

The commutator terms come from the Baker—Campbell-Hausdorff formula. Terms that fall off at
least as 1A° have been suppressed. We find
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_DA+m2 _DA+m2
Try logl 14 T =4Try, log T )

0 0

ie d'p ( ie )*“
Try log| 14— Fl=- — 4 - E| .
A 09(“ -0, ) fpsﬂzﬂ)“ dXE n' { O+ m]*"

Here,* denotes the product of symbols of tleDOs which has the asymptotic expansi@0).
Now using the fact that -F=0 and the expansiofA8) for o{1/(c;+c,d,)], we get

e
Z_DAU-F
i il o oo g o) ol
=-= dxtrlo| ———= | *0-F*og| ——— |*o-F|+0
2) = (2m)* ) o —Op+m? —Op+m? A®

_1 d*p o & ( 1)
"ZLKA @) e 1 F O\

& 4 2 0
16712 IogAjAd Xtro-F+O(A").

Try Iog(}l4 -

This provides the results needed in the main text, since, as will be shown below, there are no
contributions to the divergent part of the trace that come from the commutator terms. For this, we
expand the logarithm in the first commutator term above which gives us

1 1M|<1_i_e F)
5 o] 109{ 14 AS ,100| 14 —DA+mZO-.

=L log 1,2 EAE ™) ek Ly [ g1, C 2™
_2 ryl 1og| 1a Aé v_DA+m20" 2 raf 109\ 14 AS y

1 ie 2 1
T2\ coeme? P TN )

The first term on the rhs is zero, so we have

1 14(_DA+m2)> ( _ ie )
2TrA{|og<—Ag ,logl 14 ——DA+mZU'F

i e e Eee S R PV
_4e2TrA[Iog< A2 ,_DA+ng.F +0 )

Now

o (l(—DA+m2)>( 1 .F>2 s p2+m2< 1 )2 2 +O(i)
7110 A2 N\ Oa+m?” - gAg’p2+mZU . \A®

so there is no contribution to the divergent part of the trace.
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Next, we turn to the first triple commutator term in the above identity. Counting the powers of
p in the pertinent symbols, the leading term should scale like#.IMowever, this term contains a
single o-F which gives zero under the tracgtiTherefore, one must take one more term in the
expansion of

Iog<l4 - ﬁa’ . F) .
A

The resulting expression then is of ordepi And hence can be dropped. Finally the second triple
commutator term can be seen to behave a&.1lh conclusion, we have shown that for the
divergent terms of the cutoff regularized trace, all commutator terms can be neglected in the above
identity.

Dependence on the regularization scheme

Computation of the symbol &fA +[J,). We start with the following sum expression for the
(regularizedl #-function (Ref. 9, p. 248, etg:

1 eiwro* e—xO*
=— = = > 0.
0(X) 6(;_‘; X im e 1 o, =2r+1)mle, €>0

(This expression is the discretized version of the well-known integral formula

dz &%
609 = f27TIZ

The latter is regained fo¢— c.) Differentiation yields

=ty S

2 xriwymr NEL230

for the (n—1)th derivative of theregularized Dirac 5-function.
Using the above expression, we have

* i 0"
o0 (A?+0p)]= 1 > o{e—_} .

r=—wx (AZ + DA) + le’

We derived the asymptotic expansion for the symbalagf+c,[1,)"* [see Eq(A8)] to be given

by
of (cql + ¢ M(p.x) ~ nio (fl—)nz)nm(DA +2ip,Di)"L.
Using this we get
o €0y

0-[05(A + DA)] E 2

 (A2-p) +ie )N+1(DA+2|p”DAM)n1
€r=—xn=

Using the expressions fcﬁ‘e”) in the above expansion we finally have

o]

ol 0 A+0)]~ 2 = a*“ D(A2-p?)(Op+ 2ip“Da,)"L.
n= 0

Computation of the tracedVe can now proceed with the calculation of the trace. From the

Downloaded 09 Feb 2005 to 136.152.180.178. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



032301-24  J. Loikkanen and C. Paufler J. Math. Phys. 46, 032301 (2005)

remarks in the main section, we know that we can drop the spatial regulagorce terms
proportional to the volume dk* cancel exactly. We calculate

o —Og+n? —Og+n?
Trylog T - Try log T
0

0

o1 d*p : p*+
=> = —— | d*&"V(AZ-pdlo ( tr (O + 2ip“Da, )™ + - -+
n=0 n! Ip|=1 (277)4 R* P J g N P A
-Trylo (_—D0+mz>
A 109 Ag
d“pf p? + nm?
= d*x 6(A%- 2)Io( tr 1+2 f S H(A2-p?)
fp|>1 (2m)* Jgs P § 1N p=1 (27T)4

p?+mP . N —Oo+n?
Xlog| ——— |tr\(00a+ 2ip#Da,)"L + - - = Try log| — 55— |,
A0 AO

where the dots indicate terms that are uniformly bounded.itin particular, we have split the
p-integral in a part over the unit ball and an integral over the rest. The former contributes to the
finite part) Now the first term on the right-hand side matches the last one in thedimit. As
explained in the main text, we are interested in the temss$ of the sum above. Expanding the
pertinent terms and performing the anguteintegrals gives

- o+ n? - o+ n?
TriA Iog(#) -Try, Iog(#)

0 0

2 2

1 (- p?+m 11 (7
=== | dppPa(A?-pA ( )f d'xt Dl+——f dp PPV (A2 - p?
8712[1 p p°o(A° - p9)log A2 ) XthEal g2 PP (A-p)

p2+m2
2

xlog(
0

) f d*x tryy (03 - pZDA)1+— f dp p*6? (A2~ p?)
R4

p2+m2
2

0

><I0g< ) J d*x try(CJ% - p?(2004 + Da,0aDa,)) 1
R4

2

33 A2 2 p+mz)f4 4 _ o 23
248#[ dp p*6®(A p)Iog( Az R4d x try(004 - 3p2003

— P’ D, CAD4 — pP?Da,03Da, — P?Da,IaDATA + 5p*(T2
+D4D)Da,Da, + DATIADA,)) 1 +

We have also taken the limé&— o, in which &, goes over into the Diraé-function.
Gathering terms with equal spatial integral we obtain
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-0 2 -0 2
G Iog( —[O\: m ) - Trio Iog( —[O\: m )
0 0
_1 [ p2+mz)<3 o o Loy 2>J 4
_sﬂlj deog( Az p38(A% - p?) 2p6< (A%-p? R4dxtrNDA1
1
3q1) 2 2 _ —A542) 2_R2
Jouo(A2 )( SVA? = p?) = Sp76D(AZ - p?)
1 2@z 2>J 4 2 1 Jw (p2+”‘2)
+36p5< (A%-p? R4dXtrNDA1+8772 ) dp log Az
1 ez o, L 703022 4 P
x| = =p°8?(A%2-p?) + —p’8¥(A% - pd) d*x try DATAD,L
6 36 s

1 (" p2+mz>1
— | dpl —p’5¥(A?-p?
szl pog( AZ 6P (A*=p9)
2

d* DMDVDDliwdl P
XR4 X try AAA/.LAV+87721 plog

m?\ /(1
> ><5D35(3)(A2-p2)

0

1
- =pPsW(A%- p2)>f dixtry 31+ -+ .
8 e

Next we make a change of variablg=u to get

- o+ n? - o+ n?
TriA Iog( —jo\z ) - Trio Iog( —10\2 )
0 0

o0 2
:i % |og<u+m )(ué(Az—U)—%uzé(l)(Az—U)>J d4XtI’N DA]-

8n?), 2 A2 R4

1 (*du u+rr12<

—| I sV(A2- ——26<2)A2—
+8ﬂ21209( Ao)zu (A%=u) - Zu“69(A"~u)
1 s@az )J 4 “du (u-!-_mz)
+ el S¥(A%-u) y d*try 021 + — ﬂ2 5 log A2

1 1
X (— U258 (A2 -u) + —uds¥(A2- u)) f d*x try DAOADA,L
6 36 R4

1 (“du u+n?
+— __ — 343 2 _ 4 )7 Y4
52 fl 5 lo ( A2 )36u S¥(A%-u) fmd X try DADADA,Da,1

f Yo (u+mz)< u6<2)(A2—u)——u26<3)(A2—u))f d* try 131 + -+
8772 R4

Now by integrating by parts and noting that

k
%(5(/\2 -u)= (- D)ksW(AZ-u)

we have
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- o+ n? - o+ n?
G Iog( —10\2 ) - Trio Iog( —22 )
0 0

:ﬁlj: du Iog(uj\glz)é(f\z—u)u(l— 1)fR4d4xtrN Ol

" 161072le du |og<u ;?2)5(/\2— u)(E - % ¥ é)f dxtry (21
+ 161072£wdulog<u;g]2)5(/\2— U)(‘ % + é)fR4d4XtrN DALADA,1
+ éﬁw du Iog(uzg]z)éa(Az—u)L‘ld“xtrN DADADA,Da, 1 + -+

‘——lf dulo <U+ 1
=7 16726 g

1626
xf du Iog(
1

)5(/\2 - u)f d* Tr DAOADA L+

)5(/\2 -u) f d*x try DADADA,Da, L + -

1
=~ 962 lo ( ) d*x try DALIADA,L
1 A2+ P
* 96,2 log d4xtrN DADADA,DA, L + -+

Recalling that

u vy e v
trN(DADADAM - DADADAVDA,U.) = E trN F~ FI»LV

we finally get

-I—rEIA |OQ<M> _TrDO |OQ<M> :_EL |Og Af trN FAE 4 vee ,
A A2 A A2 29672 AgJpa pv

(A12)

where again the dots indicate terms that are bounded or polynomial in

Computation on the Moyal plane

General remarksThe symbol of the operatm1+c25,§ is given by

O-(X! p) = U[Cl + 02DZ](X, p)
= - p?- 2eptA, (X - 30p) +ie(#A,) (X — 30p) — EE(A+A,) (X - 30p).

From this expression, it is clear that one can bouatfdom below by a positive constant and from
above by a multiple op? for p? greater than a certain constant. Furthermore, the derivatives of
fall off as long asx is confined to some compact set. Therefore, by Ref. 17, corollary 5.1, there is
a DO that inverts(c, +c,[1%) up to some infinitely smoothing operator.

Derivation of the recursion relatiams in the first section of this appendix, we start with the
following identity for o
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P(x) = (cq + ) (¢ + R0 H(X)

—(C1+CZDA)f 2 )4fd4y PN or(x, p) ih(y)
d*p
(2m)*

+ G0 (6P YY)
To continue we need the following formula:

f d*y(cy + Cy(9#d,, + ie(#A)* + 2ieAxd, — EAF*A %)) (€P Vol (c;

PV (%, p) = [o(+ + %@p, p)*ePE Yy ()](%)

which can be proved as follows. Using the integral expression for the star product,

(19100 = om* [ | (- Joe)gaty e,

we have for a Schwartz test functign

{(,-(. +%®p, p)*eip('"y))((-)}(x) = G J f de d420<x— %0§+ ;.p p) P(Y)y (7)€ €72

1 1
(2 )4ffd4§d4z<r<x—§0§+ 2®p p) (2)e7HEP ey

1 1 ) |
= (2m)? f dé¢ O'(X - §®(§_ D), p)X(g_ p)g&py

= gpy)

1 ~ 1~ \ .~ =
2 J d*é o(x— 5®§, p)x(&)éfx.
Now in the limit y— 1, the Fourier transforny approximates the delta function. Therefore, in this
limit, we obtain the claimed identity. Using this formula in the expression/fo) we get
(x) = J J ° )4 P e+ Co(dd,, + ie(#A)* + 2ieAxd, — A% A, %)) (o(x,p)EPXY) y(y)

d*p d'y : :
= J f 2 — o (Cy + Cy(0#0,, +ie(#A ) * + 2ieAxd, — EN*A %))

X(a(- +56p, p)*ép<"y>)(x)¢(y)

d'pdiy : 2
(2 (Cy + (0o + 2ip#d, — p= + ie(*A,)* — 2ep*A,x

+ 2ieAxd, — ezA/‘*AM*))o-( -+ %@p, p) } *ePCV(x)yy)

Jf )4 (Cl+C2p +C2(DA( <w2ep * 2" DA( ~(1/2)0p), #))0( P)EPY yfy),

which gives us

1= (Cl - C2p2 + CZ(Dz(._(l/z)@p) + 2ipMDz(._(l/z)@p),M))U[(Cl + CzDﬁ)_l](X, p)

or
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C1— C2p2 Ci—Cp
X(X,p). (A13)

ol (c1+ ¢, (%, p) = 5(OAc—w20p * 2P*DR~1/20p) oL(C1 + C0R)™]

Derivation of the asymptotic expansioiVe setR:=(c;+ CZDf\)‘l. As -] f\ is a positive opera-
tor, R is bounded forc; -¢,<0. Indeed, from

Lﬁ&ﬁmmwm:L;M@mwm:hgwﬁmmam

which holds fory, A, ¢ € L%(R?*) (Ref. 10, lemma 2.1)0andK* z,b:E*A we conclude

(4, Ax @) = (Ax i), @)

and henceDj )"=-Dy . Therefore,

4
(¢,~ O = 2 (D4,@.D4,0) = 0.
n=1
In our case, we have,=1-s+s(m?/A2) and c,=-s/A3 for 0=s=<1 which meets the above
requirement oft; -¢,<0 for 0<s=<1. Fors=0, we havec,=0, c; # 0, andR is a multiple of the
identity.
Next, letRy be theWDO defined by the symbol

N
(-c)" .
ol ROGP) = 2 55 (OR —amep + 2P*Dac-wzep). )" L-
n=0 (C1 = C2p%)
We will show that the differenc®-Ry is a trace-class operator.

For this, we first applyc, +c,[14 from the left to obtain

(¢, + OQ(R-Ry) =1 —(cy+ MR-

Here, 1 denotes the identity operator. We will compute the symbol o#th® on the right-hand
side of this equation. On the level of symbols, multiplicationRpf by cl+02D,§ from the left
amounts to the application @§+c,(=p*+0f_1/z0p * 2IP*Da(—1120p.,) 10 olRy], cf. the deri-
vation of the recursion relation above. Hence, we find

Op),u

0'[1 - (Cl + CZDZ) RN](X- p) =1- (Cl + CZ(_ p2 + DZ(-—(lIZ)G)p) + Zip'uDz(._(l/z)@p)#))O'[RN](Xa p)
=1 -(c; ~ cp?) ol Rl = (D8 ~as20p) + 2P*DA—1/20p) ) OLRN]
N
(-¢c)"
no1 (¢ = cp?)"

0 H 0
(Oac-w2ep * 2P*Da~126p..) "1

. % (_ C2)n+1

0 . 0 1
¢ (Cy— chZ)n+1(DA<-—<1/2>®p> +2p“Dy1mop ) 1
n=

_ (- CZ)N+l ¢ 2ip“D? N+1q
_(cl—Czpz)Nﬂ( A—~126p + AP“Dac—aep n) 1-

Let ry be defined by the last expression,
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(_ C2)N+l ]
olrnJ(x,p) = oo Czpz)N+1(DZ(-—(1/2)p) +2ip“DR ~120p))" 1

We will show thatry is a trace-class operator for sufficiently lariye Expanding the power of
operators in the symbat{ry] yields terms of the form

1 1
constXx (Cszpz)Nﬂ X fox-ee *fk<X— E@p) ,

k=1,...,4AN+1), thef; denoting the external field&, or derivatives thereofWe have used the
fact that(f(-—30@p)*g(-—30p))(x)=(fxg)(x-30p).]

As A, is in P and of order -2, Moyal multiplication by it increases the decay property of
the x-dependent part by 2. On the other hand, differentiation increases it only by 1. Therefore, the
leading term of the above type will be the one whidrderivatives O‘Df\(-—u/zmp),u hit a singleA,,.

The resulting term can be bounded from above by

1
(1 + (X _ %@D)Z)(4+5+N)/2

1 2\N/2
constx L+p)" X (p)Ne X
which is integrable irk—p space for sufficiently larg®l.

Application from the left of the bounded operat@rto ry does not change the property of
being trace-class. On the other hand, we find

Rry = R(c; + 6,009 (R-Ry) =R-Ry.

To summarize, if we are interested in the singular behavior of the cutoff regularized trRcevef
may use the symbob{Ry] for N sufficiently large in the integral formula of the trace. This
amounts to the iteration of the recursion relati@i3) N times.

Remarkslt is easy to see that a blind application of the machinerf¢®O leads astray. As
already mentioned in the main text, the symbol of the operbtds given by

ol fx](x,p) = f(x - 30p).

Hence,fx is an infinitely smoothing operator ffis a Schwartz test function. In other words, the
noncommutative Klein—Gordon operatﬁrfi differs from the free operatdr], by an infinitely
smoothing operator,

O{DZ](X’ p)=-p*- 2epALu(x— %@p) +ie(d"A,) (X~ %(‘)p) - ez(A"*AM)(X - %@p)
= o{](x,p) + smoothing.

One might therefore expect that the dependence on the Aaedishe resolvenR s in the part that
is not seen by an asymptotic expansionpirand hence does not contribute to the divergent
behavior of the trace. FoP DOs onnoncompacmanifoldsM this line of reasoning must be taken
with caution, since there might be additional divergent terms fromxtlrtegration in the trace
integral. This is nicely illustrated by the above computation and the following example. Consider
the function ,

f(X, p) — e—xze'p —(1/4)p27

wherex and p are one-dimensional variables. Clearly

|50 (x,p)| < CKya,Be"(l"‘)pz, x e KC R compact,p € R,

hencef defines an infinitely smoothing operator. On the other hand,
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f dx f(x,p) = \/me!4P°,
R

and the operatof does have a diverging trace. Note that in this example, it is the noncompactness
that yields the surprise. We conclude that even in the commutative case, the correspondence
between the logarithmically divergent part of the trace and the residue needs some additional
justification.

In the above calculation, however, thex mixing in the arguments of the fields,—which
originates from the noncommutativity of the Moyal plane—makes it impossible to distinguish
between the asymptotip-expansion and afinfinitely smoothing remainder. There, additional
arguments are imperative. Observe, however, that our lines of reasoning above can be taken over
to the commutative case, thereby solving the raised objection.
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