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We consider bosons onsEuclideand R4 that are minimally coupled to an external
Yang–Mills field. We compute the logarithmically divergent part of the cutoff regu-
larized quantum effective action of this system. We confirm the known result that
this term is proportional to the Yang–Mills action. We use pseudodifferential op-
erator methods throughout to prepare the ground for a generalization of our calcu-
lation to the noncommutative four-dimensional Moyal planeRu

4. We also include a
detailed comparison of our cutoff regularization to heat kernel techniques. In the
case of the noncommutative space, we complement the usual technique of
asymptotic expansion in the momentum variable with operator theoretic arguments
in order to keep separated quantum from noncommutativity effects. We show that
the result from the commutative spaceR4 still holds if one replaces all pointwise
products by the noncommutative Moyal product. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1839277g

I. INTRODUCTION

In this paper we study the determinant of certain differential operators. Such determinants
naturally arise in quantum field theory at the one loop level. As the determinant of an operator on
an infinite dimensional Hilbert space is not ana priori well-defined object, one must choose some
regularization scheme. The latter means generally the choice of a recipe for how to replace the
formal expressions by something that is both amenable to a rigorous definition and close in its
properties. In our case of the regularization of determinants, a common starting point is the
well-known identity

log detA = Tr log A, s1d

which holds forsfinite dimensionald matricesA. The task is now to give meaning to the trace on
the right-hand side, since the operators of interest do not have a finite trace in general. In this
paper, we restrict the trace to run over a subspace of our Hilbert space only. Loosely speaking, this
subspace is spanned by wave functions that have a momentum expectation value smaller than a
certain cutoffL. The precise definition will follow below. It is known that the cutoff regularized
logarithm of the determinant, now viewed as a function ofL, contains a term that scales like logL
for largeL. This term is closely related to the Wodzicki residue for the operator under consider-
ation, a quantity that is of interest in the study of infinite dimensional geometry, see Ref. 15 for a
recent review.

Motivated by the observation14 that for fermions minimally coupled to an external Yang–Mills
field, the logarithmically divergent part of the cutoff regularized logarithm of the determinant of
the smassived Dirac operator is proportional to the corresponding Yang–Mills action, we consider
the case of bosons in an external Yang–Mills field onR4. With our work, we confirmed that the
above result also applies to the bosonic case. The former result was proposed to be interpreted in
two ways. On the one hand, the spectral action principle2 states that the spectrum of the Dirac
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operator should provide exhaustive information about the complete bare action including the
Yang–Mills expression. On the other hand, it is known that the logarithmically divergent part plays
a critical role in the selection of the finite part of an effective action because of its behavior under
rescaling of the regularization parameterL. From the latter viewpoint, it is desirable that the
logarithmically divergent term in the regularized effective action produce expressions that occur in
the complete bare action already.

To understand the connection between these two interpretations, it is interesting to consider
the case ofsscalard bosons coupled to an external Yang–Mills field.

It is generally accepted that space–time might lose its smooth properties at very small scales.
One possible mathematical framework for this is noncommutative geometry.3 We are interested in
a particular example, the four-dimensionals4Dd Moyal plane,10 also known as noncommutative
flat spaceRu

4. Roughly speaking, the 4D Moyal plane differs from its Euclidean counterpartR4 in
that there is an uncertainty relation for the simultaneous measurement of coordinates coming from
the nonvanishing commutator

fxm,xng = iQmn.

Herexm, m=1, . . . ,4 are coordinates ofR4 andQ is somesantisymmetricd matrix. In this paper we
takeQ to be proportional to the constant symplectic matrix, see Eq.s16d. We refer to Ref. 5 for a
treatment of Lorentz covariant generalization of this equation.

Although the results of our analysis for the case of bosons on the commutative spaceR4 are
not new and can be found already in deWitt’s book,4 our consistent use of pseudodifferential
operator methods technically makes possible the generalization to the noncommutative Moyal
plane. We refer to Refs. 18 and 11 for a generalization of heat kernel regularization calculations to
the noncommutative torus and the Moyal plane, respectively.

The remainder of this paper is structured as follows. Section II sets up the notation used in our
work and states the results in the form of two propositions. Section III provides the necessary tools
from the theory of pseudodifferential operators. The proofs of the statements from Sec. II can be
found in Secs. IV and V, with detailed calculations postponed to the appendix. Also, Sec. IV
contains additional arguments that make contact with the case of fermions onR4 and to an
alternative regularization scheme, the heat kernel regularization. Section VI concludes with what
we consider to be the lessons from our calculations.

II. NOTATION AND STATEMENT OF THE RESULTS

We consider the Klein–Gordon operator with minimally coupled external field on the four-
dimensional flat Euclidean spaceR4, given by

hA = DA
mDA,m = s]m + ieAmds]m + ieAmd = ]m]m + ie]mAm + 2ieAm]m − e2AmAm

= h0 + ie]mAm + 2ieAm]m − e2AmAm. s2d

Here,m=1, . . . ,4 are thesEuclideand indices ofR4, ]m=] /]xm, andAm are glN-valued Yang–Mills
fields onR4. The bosonic wave functions are elements of the Hilbert space

H = L2sR4d ^ Ccolor
N ,

where the last factor carries a glN representation from the external Yang–Mills fields. As an
unbounded operator inH, h0 can be defined on smooth functions inH by its formal expression
and then extended to a self-adjoint operator. We assume the Yang–Mills fieldsAm to be regular,
i.e., to be smooth and to fall offstogether with all their derivativesd at infinity like uxu−2−e, e.0.
The latter assumption ensures that all our spatial integrals below will converge. Also, for regular
Am, the self-adjoint extension ofhA can be computed from that ofh0. In what follows, we will
not distinguish between the formal expression forhA and its self-adjoint extension.
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We consider the cutoff regularized logarithm of the determinant of the massive Klein–Gordon
operator

SLsAd ª TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD , s3d

where the cutoff regularized Hilbert space trace TrL sums over states with momentum bounded by
L. More precisely, ifD is an operator onH and Tr denotes the operator trace onH, then the cutoff
trace is defined by

TrL D ª TrhusL2 + h0dDj, s4d

whereu is the Heaviside step function. As is well-known, the expressions3d occurs in quantum
field theory as the one-loop effective action. Using the formal identity log det=Tr log, it can be
viewed as the generalization of the determinant to operators on an infinite-dimensional Hilbert
space.

The parameterL0 has been introduced to balance physical dimensions. It also provides a
useful tool for cross checking since in the result of our calculations, it should cancel. Moreover, in
the definition of the regularized determinant, we have subtracted a term containing the free Klein–
Gordon operator as a reference. Whereas this term is needed for turning the expression under the
trace into a pseudodifferential operator, it also comes in—at least in the corresponding expression
for fermions—when interpreting the determinant as a subsummation of the one loop diagrams in
the Feynman path integral.16

The regularized determinants3d has an asymptotic expansion inL for large values ofL as

SLsAd = c2sA,mdL2 + c1sA,mdL1 + clogsA,mdlog L + c0sA,md + ¯ , s5d

where the dots indicate terms that vanish at least like 1/L in the limit L→`.
We are interested in the coefficientclogsA,md;clogsAd.
Proposition II.1: For the regularized determinant SLsAd defined as above, the coefficient

clogsA,md is proportional to the Yang–Mills action of Am,

clogsAd =
1

96p2E
R4

d4x trNsFmnFmnd, s6d

wheretrN is the matrix trace inglN and the curvature Fmn of Am is given by

Fmn = ]mAn − ]nAm + iefAm,Ang. s7d

The proof is contained in Sec. IV A. Note that the numerical factor in front ofFmnFmn differs from
the one obtained in Ref. 4 Eqs.s24.16d, etc., by 1

2. By the considerations below, this can be
understood as coming from the usage of a nongauge invariant regularization forSLsAd. However,
the latter allows a straightforward generalization to the noncommutative Moyal plane.

It is well-known that

sD” Ad2 = 14hA − ies ·F, s8d

where D” A=gms]m+ ieAmd, s ·F= 1
4smnFmn= 1

2gmgnFmn, and gm are the four-dimensional gamma
matrices, i.e., 434 matrices that satisfy

gmgn + gngm = 2hmn14, s9d

hmn being the Euclidean flat metric. Using this identity, we are able to rederive the result of Ref.
14 concerning the determinant of the Dirac operator. This is demonstrated in Sec. IV B. Our
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computation has the advantage of avoiding extensive calculations involving the gamma matrices
gm.

It is at first sight surprising that the nongauge invariant definition of the determinant yields a
gauge invariant logarithmically divergent part. It is therefore natural to consider the manifestly
gauge invariant expression

S̃LsAd ª TrL
hA logS− hA + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D , s10d

where in the first trace, the cutoff is taken with respect to the operatorhA rather thanh0. As

before,S̃LsAd has an asymptotic expansion,

S̃LsAd = c̃2sA,mdL2 + c̃1sA,mdL1 + c̃logsA,mdlog L + c̃0sA,md + ¯ , s11d

the dots subsuming terms scaling at least like 1/L. A calculation in Sec. IV C reveals that the
coefficientc̃logsA,md; c̃logsAd in s11d equals half of the corresponding expression inSLsAd,

c̃logsAd = 1
2clogsAd. s12d

This result agrees with the one obtained in Ref. 4.
A widely used alternative regularization of the determinant of a differential operator makes

use of thez-function and the asymptotic expansion of the trace of the heat kernel operator. We
want to compare our coefficient with earlier results that have been obtained with these methods6

fsee also the review articles Ref. 1, and references thereing. In this approach, one considers
asymptotic expansions for the trace of the heat operator,

Ksf,Dd ª TrL2sfe−tDd = t−2a0sf,Dd + t−3/2a1sf,Dd + ¯ + a4sf,Dd + ¯ , s13d

for small t, wheref is some function onR4 that serves as a regulator for the spatial integrals. The
rightmost dots indicate terms that fall off at least linearly int. As the heat trace must be integrated
on the positive axis together with the functiont, the logarithmically divergent contribution to the
heat kernel regularized trace is given by the coefficienta4sf ,Dd. For the comparison of this
coefficient to our result, letcs·dsf ,Ad, etc., be the coefficients in the expansion ofSLsAd, now
spatially regularized in the same way asKsf ,Dd. In Sec. IV D, it is shown that the coefficient

c̃logsf ,Ad in the asymptotic expansion ofS̃LsAd differs from the corresponding expression obtained
via heat kernel regularization methods by a term proportional tom4,

− c̃logsf,Ad +
1

32p2m4E
R4

d4x fsxd = a4S f,
− hA + m2

L0
2 D . s14d

The additional mass term can be traced back to the usage of the reference operator −h0+m2 in s3d.
The calculations using the heat operator can be generalized to the noncommutative 4D torus18 and
the noncommutative Moyal plane.11 The only change one encounters is that in all expressions, the
commutative product of functions must be replaced by the noncommutative product!.

The main part of our paper is devoted to the study of the case of the 4D Moyal plane as the
underlying snoncommutatived “space.” In this case, the algebra of functions onR4 is furnished
with the snoncommutatived Moyal–Weyl product!ª!Q. The latter is defined by the integral
formula

f ! gsxd =
1

s2pd4E
R4
E

R4
d4y d4j eijsx−ydfsx − 1

2Qjdgsyd, s15d

whereQ is a 434 matrix defined by
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Q = uS 0 12

− 12 0
D s16d

for the real parameteru. In our calculations we do not use asymptotic expansions of this product
in powers ofu.

On the Moyal plane, we consider the generalized Klein–Gordon operator

hA
u = ]m]m + ies]mAmd ! + 2ieAm ! ]m − e2sAm ! Amd ! , s17d

where f! is a short-hand notation for the operator that!-multiplies smooth wave functions inH
from the left by thessmoothd function f. We defineSL

u sAd and cs·d
u sA,md in analogy with the

formulass3d and s5d above. Then, our main result is the following.
Proposition II.2: For minimally coupled bosonic fields on the (noncommutative) 4D Moyal

plane, the above formula (6) holds with the commutative products replaced by the noncommutative
Moyal–Weyl product, i.e., we have

clog
u sAd =

1

96p2E
R4

d4x trNFu,mn ! Fmn
u , s18d

where

Fmn
u = ]mAn − ]nAm + efAm,Ang!. s19d

III. PSEUDODIFFERENTIAL OPERATOR METHODS

In our work, we deal with a restricted class ofpseudodifferential operatorssCDOd which
suits our purposes. The statements below may be found in Shubin’s book.17 We considerCDOs
that act on smooth and compactly supported wave functionsu as fx=sxmd, m=1, . . . ,4, and like-
wise y, p describe points inR4; xp=omxmpm denotes the scalar product,uxu is the length of the
vectorxg

sAudsxd =E
R4

d4p

s2pd4E
R4

d4y sfAgsx,pdusydeipsx−yd,

where thesymbol sfAg of A is a smooth function that allows anasymptotic expansionin p
according to

sfAgsx,pd , o
r=0

`

sm−rfAgsx,pd.

Here,; means that for eachs, the finite sumor=0
s sm−rfAg approximatessfAg up to a function that

falls off at most asupum−ss+1d for large upu,

U]x
a]p

bSsfAgsx,pd − o
r=0

s

sm−rfAgsx,pdDU ø Cabs1 + upu2dfm−ss+1d−ubug/2

for all multi-indicesa=sa1, . . . ,a4d, b=sb1, . . . ,b4d, where

]x
a = S ]

]x1Da1

¯ S ]

]x4Da4

,

uau=a1+¯ +a4, andCab are constants. The numberm above is called theorder of A. For a given
symbol, there are many different asymptotic expansions. One particular choice is the asymptotic
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expansion in terms ofhomogeneous symbolssm−r
h fAg, i.e., smooth functions that in addition satisfy

sm−r
h fAgsx,lpd = lm−rsm−r

h fAgsx,pd for upu = 1, l . 1.

The first termsm
h fAg in an asymptotic expansion in homogeneous summands is termed theprin-

cipal symbol.
An asymptotic expansion encodes the information of a given symbolsfAg up to an additive

function that falls off inp like a Schwartz test function. This piece of information will be sufficient
for our purposes.

While the expansion in homogeneous symbols is appropriate to discuss invariant notions such
as the residue of aCDO, the expansions obtained from recursion relations in the computation of
resolvents of operators are not of this type in general. The two types, however, are related to each
other through a finite resummation at every order of the infinite sum.

The action of theCDOs considered here can be extended to smooth functions, leading to the
useful formula

sfAgsx,pd = e−ixpAeixp.

For the productAB of two CDOs A andB with respective symbolssfAg andsfBg, one has
the following asymptotic expansion of the symbol:

sfAg p sfBgsx,pd = sfABgsx,pd , o
a

s− iduau

a!
]p

asfAgsx,pd]x
asfBgsx,pd, s20d

where the sum runs over all 4-indicesa and we have used the notationa ! = a1! ¯a4!. We will
usep whenever we mean this product of symbols, in contrast to the noncommutative product!
defined later on.

InterpretingA as an operator in the Hilbert spaceL2sR4d ^ CN, we can compute the trace ofA
from its symbol according to

TrsAd =E
R4

d4p

s2pd4E
R4

d4x trN sfAgsx,pd,

where trN denotes the matrix trace over the glN-part of the symbol.
For operatorsA that do not have asfinited trace, one considers the cutoff trace

TrLsAd =E
upuøL

d4p

s2pd4E
R4

d4x trN sfAgsx,pd.

Clearly, this coincides with the previous definition of the cutoff regularized trace, Eq.s4d.
The above expression has an asymptotic expansion inL, as can be seen from the asymptotic

expansion of the symbolsfAg in homogeneous symbols. In this case, there appears a term scaling
like log L. On the other hand, theWodzicki residue19 of the operatorA is defined as the angular
p-integral and the spatial integral of the coefficients−4

h fAg in the homogeneous asymptotic expan-
sion,

RessAd ª
1

s2pd4E
upu=1

dVpE
R4

d4x s−4
h fAgsx,pd,

whenever the integral exists. It is known that for compact spatial manifolds this quantity deter-
mines completely the factor in front of the logL term in the asymptotic expansion of TrLsAd. By
abuse of notation, and motivated by the above observation, in our calculations we will use the
expression Ress¯d to mean the factor in front of the logL term in the corresponding cutoff
regularized trace.
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IV. THE CASE M=R4

A. The logarithmically divergent part

In this section we compute the logarithmically divergent part of the bosonic effective action
on R4. We define the regularized bosonic action as

SLsAd ª TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD . s21d

We use the following expression for the logarithm:

logs1 + ad =E
0

1 ds

s
s1 − s1 + sad−1d s22d

and recall the definition for the regularized trace of a pseudodifferential operator

TrLsad ª E
upuøL

d4p

s2pd4E
R4

d4x trN sfagsx,pd s23d

to get

TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD

= −E
upuøL

d4p

s2pd4E
R4

d4xE
0

1 ds

s
trNSsFSI + sS− hA + m2

L0
2 − IDD−1G

− sFSI + sS− h0 + m2

L0
2 − IDD−1GD . s24d

As shown in the first section of the Appendix, the symbol of the resolvent ofhA must satisfy the
following recursion relation:

sfsc1I + c2hAd−1gsp,xd =
1

c1 − c2p
2 −

c2

c1 − c2p
2shA + 2ipmDA

mdsfsc1I + c2hAd−1gsp,xd.

Its formal solution is given by

sfsc1I + c2hAd−1gsx,pd = sc1I + c2s− p2 + hA + 2ipmDAmdd−11,

which can be understood as defining an asymptotic expansion, see the Appendix for details. In
particular, for our values ofc1 andc2, we derive

sFSI + sF− hA + m2

L0
2 − IGD−1G , o

n=0

`
ss/L0

2dn

S1 − s+
sm2

L0
2 +

s

L0
2p2Dn+1shA + 2ipmDA

mdn1.

Here and in all what follows, the 1 on the right-hand sidesrhsd means that the operatorshA, DA,m

should be applied to theN-dimensional constant vector.
Inserting this expansion into the integral and noting that the second symbol just cancels the

first term in the expansion we then have
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TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD = −E

upuøL

d4p

s2pd4o
n=1

`
1

L0
2nE

0

1

ds
sn−1

S1 + sSp2 + m2

L0
2 − 1DDn+1

3E
R4

d4x trNshA + 2ipmDA
mdn1. s25d

In the first section of the Appendix we will expand explicitly the terms ins25d and pick out the
logarithmically diverging ones. Setting all the relevant terms together then gives

ResSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD

= −
1

8p2m2E
R4

d4x trNhA −
1

16p2E
R4

d4x trNhA
2 +

1

8p2m2E
R4

d4x trNhA +
1

12p2E
R4

d4x trNhA
2

+
1

24p2E
R4

d4x trN DA
mhADAm −

1

48p2E
R4

d4x trNshA
2 + DA

nDA
mDAnDAm + DA

mhADAmd

=
1

48p2SE
R4

d4x trN DA
mhADAm −E

R4
d4x trN DA

nDA
mDAnDAmD . s26d

A short calculation shows that the terms under the trace are equal tose2/2dFmnFmn, so we finally
get the result

ResSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD =

e2

96p2E
R4

d4x trNFmnFmn s27d

which proves Proposition II.1.

B. Comparison with fermion calculations

To incorporate fermions, we have to extend the Hilbert space. We takeHfermion=L2sR4d
^ Ccolor

N
^ Cspin

4 , where the last factor carries a representation of the Dirac gamma matrixesgm, m
=1, . . . ,4.

We begin by computing the square of the Dirac operatorD” . First some definitions

DAm = ]m + ieAm,

D” A = gms]m + ieAmd.

A short calculation yields the well-known formula

sD” Ad2 = 14hA + 1
2gmgnfDAm,DAng = 14hA + ies ·F.

Here,14 denotes the 434 unit matrix and

s ·F ª

1
4smnFmn = 1

2gmgnFmn

for the matricessmn
ª fgm ,gng. We use the above identity to obtain

s− iD” A + imds− iD” A − imd = − sD” Ad2 + m2 = − 14hA − ies ·F + m2.

Taking the logarithm on both sides, for the left-hand side we arrive at
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logS− iD” A + im

L0
DS− iD” A − im

L0
D = logS− iD” A + im

L0
D + logS− iD” A − im

L0
D ,

while the right-hand side gives

logs− 14hA − ies ·F + m2d = logS 14s− hA + m2d
L0

2 DS14 −
ie

− hA + m2s ·FD
= logS 14s− hA + m2d

L0
2 D

+ logS14 −
ie

− hA + m2s ·FD + commutator terms.

The extra commutator terms can be computed from the Baker–Campbell–Hausdorff formula.
It is known that on compact manifolds the Wodzicki residue vanishes on commutators.19 We

therefore expect that from the above expression, the commutator terms will not contribute to the
logarithmically divergent part of the regularized trace. In the second section of the Appendix it is
shown explicitly that this is indeed the case. Rather than using integration-by-parts arguments, this
is readily seen from the fact that theCspin-trace overs ·F gives zero. Also, the pertinent contribu-
tions from the first two terms of the right-hand side are calculated in the Appendix.

Furthermore, from Langmann’s results14 we know that TrL logfs−iD” A+ imd /L0g is indepen-
dent of the sign ofm, so we have

2 TrL logS− iD” A + im

L0
D = 4 TrL logS− hA + m2

L0
2 D +

e2

16p2 log LE
R4

d4x trss ·Fd2

+ terms finite inL,

where the trace tr runs over both theCcolor
N and theCspin

4 parts. Performing the trace over the
g-matrices yields

trss ·Fd2 = − 2trNFmnFmn.

The result is then

TrL logS− iD” A + im

L0
D = 2 TrL logS− hA + m2

L0
2 D −

e2

16p2 log LE
R4

d4x trN FmnFmn + ¯

= S e2

48p2E
R4

d4x trN FmnFmn −
e2

16p2E
R4

d4x trN FmnFmnDlog L + ¯

= −
e2

24p2 log LE
R4

d4x trN FmnFmn + terms finite inL,

in agreement with Ref. 14.

C. Dependence on the regularization scheme

So far we have been looking at the cutoff regularized determinant
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SLsAd = TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD . s28d

As the cutoff in this regularization is taken with respect to the reference operatorh0, the above
expression is not manifestly gauge invariant. It is thus surprising that the coefficientclogsAd turns
out to be gauge invariant.

One could use the spectral projection with respect tohA instead, but again the resulting
expression would fail to be manifestly gauge invariant now because of the reference term
logfs−h0+m2d /L0

2g. The latter had to be included to make the calculations tractable by the meth-
ods of classicalCDOs.

Of course, there are gauge invariant regularization schemes such as heat kernel regularization
ssee the review articles in Ref. 1 for recent developments in this fieldd readily available. However,
cutoff regularized traces seem to be closer to physical intuition.

An acceptable, manifestly gauge invariant expression would be

S̃LsAd ª TrL
hA logS− hA + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D , s29d

where

TrL
hA logS− hA + m2

L0
2 Dª TrHPLshAdlogS− hA + m2

L0
2 DJ

is defined using the spectral projectionsPLshAdªusL2−hAd of hA, whereu denotes the Heavi-
side step function that is zero for negative arguments and equal to 1 otherwise. It turns out that

S̃LsAd has an asymptotic expansion as

S̃LsAd = c̃2sAdL2 + c̃1sAdL + c̃logsAdlog L + ¯ . s30d

The dots indicate terms that are finite in the largeL limit.
In this section we want to compare the coefficientc̃logsAd of the logarithmically divergent part

in the above expression to the coefficientclogsAd computed earlier.
A short calculation reveals how to proceed,

TrL
hA log

− hA + m2

L0
2 − TrL

h0 log
− h0 + m2

L0
2

= TrL
h0Slog

− hA + m2

L0
2 − log

− h0 + m2

L0
2 D + sTrL

hA − TrL
h0dSlog

− hA + m2

L0
2 − log

− h0 + m2

L0
2 D

+ sTrL
hA − TrL

h0dlog
− h0 + m2

L0
2 . s31d

Obviously, the coefficientc̃logsAd receives contributions from three different terms, only the first of
which is given byclogsAd. From the calculation of the pertinent part in the third term, it will be
apparent that the second one in fact does not contribute toc̃logsAd. For the computation of the third
term in s31d, however, we must introduce an additional regulator that deals with the noncompact-
ness ofR4. Let f be a smooth, compactly supported function onR4, interpreted as a multiplication
operator onH. Then
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TrH fusL2 + hAdlog
− h0 + m2

L0
2 J =E

R4

d4p

s2pd4E
R4

fsxdsfusL2 + hAdgsFlog
− h0 + m2

L0
2 G + ¯ .

s32d

The dots indicate contributions from the star product of symbols that are uniformly bounded inL.
Use has been made of the fact thatf and sflogs−h0+m2d /L0

2g are independent ofp and x,
respectively.

As a next step, we need to derive an asymptotic expansion for the symbol of the theta
function. We start with the following sum expression for a smooth approximation of the Heaviside
u function sRef. 9, p. 248, etc.d:

uesxd =
1

e
o

r=−`

`
eivr0

+

x + ivr
=

e−x0+

e−xe + 1
, vr = s2r + 1dp/e, s33d

for e.0. The step function is regained in the limite→`. Using this equation, we derive an
asymptotic expansion for the symbol ofusL2+hAd assfor details we refer to the third section of
the Appendixd

sfuesL2 + hAdg =
1

2pi
E dz eizesF 1

z− isL2 + hAdG , o
n=0

`
1

n!
de

sn−1dsL2 − p2dshA + 2ipmDAmd1.

As before, for mnemonic purposes, this asymptotic series can be summarized as

sfusL2 + hAdgsx,pd = usL2 − p2 + hA + 2ipmDAmd1, s34d

where thex dependence originates from the external fieldsA.
Combining our results, we find

TrH fusL2 + hAdlogS− h0 + m2

L0
2 DJ − TrH fusL2 + h0dlogS− h0 + m2

L0
2 DJ

= o
n=1

`
1

n!
E

R4

d4p

s2pd4E
R4

d4x fsxdde
sn−1dsL2 − p2dlogSp2 + m2

L0
2 DtrNhshA + 2ipmDAmdn1j.

Obviously, we can now drop the regulatorf.
For largeL, thede-functions cancel the radialp-integration. Therefore, the only contributions

to the logarithmically divergent part in the above expression can originate from terms where the
derivatives of thede-functions exclusively hit the trace under the integral of the measure d4p but
not the factor logfs−h0+m2d /L0

2g. This is only possible as long as 2sn−1dø3+n sthe derivatives
of de count twice because of thep2 in the argument, and the 3 on the rhs comes from the measure
d4pd and hencenø5. Moreover, since the angularp-integration over an odd number of factorspm

gives always zero, then=5 term cannot contribute either.
As shown in the Appendix, we can now expand the powersshA+2ipmDAmdn1 for nø4,

perform the angularp-integrations, substitutep2→u and use partial integration to get rid of the
derivatives of thede-functions. We arrive at
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TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

16p2E
1

`

du logSu + m2

L0
2 DdesL2 − udus1 − 1dE

R4
d4x trNhA1 +

1

16p2E
1

`

du logSu + m2

L0
2 D

3desL2 − udS1

2
−

2

3
+

1

6
DE

R4
d4xtrNhA

21 +
1

16p2E
1

`

du logSu + m2

L0
2 DdesL2 − uds− 1

3 + 1
6d

3E
R4

d4x trN DA
mhADAm1 +

1

16p2E
1

`

du logSu + m2

L0
2 D1

6
desL2 − ud

3E
R4

d4x trN DA
mDA

nDAmDAn1 + ¯

= −
1

96p2logSL2 + m2

L0
2 DE

R4
d4x trN DA

mhADAm1

+
1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trNDA

mDA
nDAmDAn1 + ¯

= −
1

2

1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trN FmnFmn + ¯ ,

where the dots indicate finite or polynomially divergent contributions.
Finally, we will turn back to the second term ins31d. The difference as compared to the

previous calculation is that now the symbol of the operator under the traces has an asymptotic
expansion that is a power series in 1/p. Therefore, in contrast to the above, no logarithmically
divergent term will occur in a largeL expansion.

Combining these results with our previous expression forclogsAd, we find

c̃logsAd =
1

2

1

96p2E
R4

d4x trN FmnFmn =
1

2
clogsAd. s35d

D. Comparison with heat kernel regularization

In this section we want to compare our results with previous ones in the literature18,11obtained
by heat kernel techniques. For a given differential operatorD, we consider the trace of the heat
operator forD,

Kst, f,Dd = Trsfe−tDd,

where the auxiliary smooth functionfsxd is introduced to make spatial integrals converge onRn.
We write the effective action forD as

S= −E
0

` dt

t
Kst, f,Dd.

Here the formula log detsDd=Tr logsDd has been used again together with the following formal
expression for the logarithm:
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log l = −E
0

` dt

t
e−tl,

which holds up to ansinfinited integration constant.
There is an asymptotic expansion for the heat trace ast→0 given by

Trsfe−tDd , o
kù0

tsk−nd/2aksf,Dd.

Next we define thez-function for D as follows:

zss, f,Dd = TrsfD−sd.

Writing the z-function in terms of the heat trace as

zss, f,Dd =
1

GssdE0

`

dt ts−1Kst, f,Dd,

we see thatGssdzss, f ,Dd has simple poles at the pointss=sn−kd /2 and the complex residue at
s=sn−kd /2 is given by

Ress=sn−kd/2sGssdzss, f,Ddd = aksf,Dd. s36d

From the asymptotic expansion of the heat trace and the integral formula for the effective action
S we see that the logarithmically divergent part is given whenk=n so we are interested in
computing the coefficientansf ,s−hA+m2d /L0

2d. In our casen=4.
The first task is to compute thez-function for the operators−hA+m2d /L0

2. From the definition
of the z-function we have

zSs, f,
− hA + m2

L0
2 D =E

R4

d4p

s2pd4E
R4

d4x trN sffg p sFS− hA + m2

L0
2 D−sGsx,pd.

We next use the expansion

sa + xd−s = o
r=0

`

s− 1dr Gss+ rd
r!Gssd

a−sr+sdxr

to write the symbol ofs−hA+m2d /L0
2 as

sFS− hA + m2

L0
2 D−sG = Sp2 + m2 − hA − 2ipmDAm

L0
2 D−s

, o
r=0

`

s− 1dr Gss+ rd
r!Gssd

L0
2s 1

p2ss+rd sm
2 − hA − 2ipmDAmdr1.

Splitting the integration in thez-function into two parts we then have

zSs, f,
− hA + m2

L0
2 D =E

upuø1

d4p

s2pd4E
R4

d4x fsxdtrN sFS− hA + m2

L0
2 D−sGsx,pd

+ o
r=0

`
s− 1dr Gss+ rd

r!Gssd
L0

2sE
1

`

upu3dupu
1

p2sr+sdE
S3

dVp

s2pd4E
R4

d4x fsxd

3trNsm2 − hA − 2ipmDAmdr1. s37d

Using the fact that under the angular integration odd powers ofp give zero we can write
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E
S3

dVj

s2pd4E
R4

d4x fsxdtrNsm2 − hA − 2ipmDAmdr1 = o
k=0

fr/2g

s− 2id2kp2k dsf,r,2kd

for some functions dsf ,r ,2kd of f, hA and DAm determined from the expansion ofsm2−hA

−2ipmDAmdr. In particular, we have

dsf,0,0d =
1

8p2E
R4

d4x fsxd.

We then find

zSs, f,
− hA + m2

L0
2 D = xssd + o

r=0

`
s− 1drL0

2sGss+ rd
r!Gssd E

1

`

upu3 dupu
1

p2sr+sd o
t=0

fr/2g

s− 2id2tp2t dsf,r,2td,

where xssd denotes the first integral in the rhs ofs37d, a holomorphic function ins. We can
evaluate explicitly thep-integral in the above expression to obtain the following formula for the
z-function:

zSs, f,
− hA + m2

L0
2 D = xssd +

L0
2s

Gssdor=0

`

o
t=0

fr/2g
1

2

s− 1dr+t4tGss+ rd
r!

1

s− s2 − r + td
dsf,r,2td. s38d

There are two parts of thez-function contributing to the residue ats=0; the gamma function
Gss+rd and the poles of 1/fs−s2−r + tdg. The first one gives a contribution forr =0 and the latter
one whenr =2+t. From the summation we see thattø r /2 so it follows that only the terms with
tø2 contribute to the residue:

a4S f,
− hA + m2

L0
2 D = Ress=0 GssdzSs, f,

− hA + m2

L0
2 D

= xs0d −
1

4
dsf,0,0d + o

t=0

2
4tGs2 + td

s2 + td!
1

2
dsf,t + 2,2td,

wherexs0d is given by

xs0d =
1

s2pd4E
upuø1

d4pE
R4

d4x fsxd =E
0

1

upu3 dupudsf,0,0d =
1

4
dsf,0,0d.

We have thus obtained the following expression fora4sf ,s−hA+m2d /L0
2d:

a4S f,
− hA + m2

L0
2 D = o

t=0

2
1

2

4tGs2 + td
s2 + td!

dsf,t + 2,2td.

We now compute directly the logarithmically divergent part ofSLsAd. For this we need the
following formula:

sFlogS− hA + m2

L0
2 D − logS− h + m2

L0
2 DG = o

r=1

`
s− 1dr+1

r

1

p2r fsm2 − hA − 2ipmDAmdr − m2rg.

Note that for this asymptotic expansion, we have divided the recursion formulasA8d differently.
We split thep-integration in the trace into two parts to get
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TrL logS fS− hA + m2

L0
2 −

− h0 + m2

L0
2 DD

= finite terms inL + o
r=1

`

o
t=0

fr/2g
s− 1dr+1

r
E

1

L

upu3 dupu
1

p2sr−td s− 1dt4t dsf,r,2td

− o
r=1

`
s− 1dr+1

r
m2rE

1

L

upu3 dupu
1

p2r dsf,0,0d.

The logarithmically divergent part is then given by

clogsAd = − o
t=0

2

4t 1

t + 2
dsf,t + 2,2td +

1

2
m4 dsf,0,0d

so we finally have the result

−
1

2
clogsAd +

1

4
m4 dsf,0,0d = a4sf,s− hA + m2d/L0

2d.

Remarks: s1d The coefficients dsf ,r ,2kd defined below Eq.s37d are given by spatial integrals
over theglsNd-trace of certain polyomials in the external fields and their derivatives. They can be
easily computed by expanding the power on the left-hand side of the defining formula, using the
well-known expressions for the angularp-integration of polynomials inpm.

s2d Note that the argument relatinga−4 andclog did not use the specific form of the coefficients
dsf ,r ,2kd. Therefore, it can be extended to a larger class of operators.

s3d Combining Eqs.s36d ands38d, we have a formula for the calculation of the coefficientsak

at hand. In particular, evaluating the functionxssd for negative integers amounts to the compu-
tation of the symbol ofs−hA+m2dl for positive integer powers ofl. The latter can be obtained
from the formula

sfs− hA + m2dl+1g = sp2 + m2 − hA − 2ipmDA
mdsfs− hA + m2dlg

and the symbol of −hA+m2.

V. GENERALIZATION TO THE MOYAL PLANE

A. The Moyal plane Ru
4: generalities

In this section, we want to replace the manifoldR4 by the four-dimensional Moyal planeRu
4,

an example of a noncommutative manifold.
For the definition of the latter, one must specifysamong other things; see Ref. 3 for the

general theory, Ref. 10 for the treatment of the Moyal plane in this contextd a snoncommutatived
associative algebraA, the elements of which generalize the notion ofssmoothd functions on an
ordinary manifold. In the case of the 4D Moyal plane, the algebraA is taken to include the rapidly
decaying Schwartz test functions onR4, while the product of two such elementsf, g is given by
the integral formula

sf ! gdsxd =
1

s2pd4E
R4
E

R4
d4y d4j eijsx−ydfsx − 1

2Qjdgsyd, s39d

whereQ is a 434 matrix defined by

Q = uS 0 12

− 12 0
D s40d

for the real parameteru.
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The elements ofA act on the Hilbert spaceL2sR4d by left !-multiplication ssee Ref. 8 for an
extension of the above formula to distributionsd. For an elementf PA, we will write the corre-
sponding operator onL2sR4d as f!. From the integral formulas39d of !, we can see thatf! is a
CDO with the symbol

sff ! gsx,pd = fsx − 1
2Qpd. s41d

Note that the asymptotic behavior off is transferred to thep dependence of the symbol off!. In
particular, for rapidly decayingf, f! is infinitely smoothing.10

A natural class of functions suitable for the Moyal product is the setP of infinitely differen-
tiable functionsf on R4 such that, for a real numbers and for every multi-indexa,

us]x
afdsxdu ø Cas1 + x2dss−uaud/2, s42d

s is called theorder of f. For f, gPP and of orders1, s2, respectively,f !g is again inP and of
orders1+s2 sRef. 12, Sect. 7d.

B. Calculation of the logarithmically divergent part

With the commutative product of functions onR4 replaced by the Moyal product!, Eq. s39d,
we are led to study the following variant of the Klein–Gordon operator

hA
uc = ]m]mc + ies]mAmd ! c + 2ieAm ! ]mc − e2Am ! Am ! c

for any rapidly decaying smooth functionc in the Hilbert spaceH=L2sR4d ^ Ccolor
N . Here, the

matrix valued Yang–Mills fieldsAm are taken to be in the setP above with order strictly smaller
than −4, i.e., to satisfys42d with s,−4.

We will also need the operatorDAm
u , defined by

DAm
u c = ]mc + ieAm ! c, c P SsR4d.

In analogy with the first section, we consider the cutoff regularized determinant ofs−hA
u

+m2d /L0
2,

SL
u sAd ª TrLHlog

− hA
u + m2

L0
2 − log

− h0 + m2

L0
2 J .

As before, the trace will be computed from the symbol of logfs−hA
u +m2d /L0

2g. For the latter, we
will need an expression for the symbol of the resolvent ofhA

u . Again, this will be obtained via a
recursion relation.

As explained in the Appendix, we find forc1, c2PC, c1·c2,0 or c2=0,

sfsc1 + c2hA
ud−1gsx,pd =

1

c1 − c2p
2 −

c2

c1 − c2p
2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd
u dsfsc1 + c2hA

ud−1g

3sx,pd,

where As·−1
2Qpd is a short-hand notation for the external fieldsAm shifted by −1

2Qp in their
argument,As·−1

2Qpdsxd=Asx− 1
2Qpd. In the derivation of the recursion relation, we have used the

identity13

eipsx−ydfsxd = ffs· + 1
2ud ! eips·−ydgsxd

and associativity of the Moyal product.
From the recursion relation, one readily obtains the formal expression
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sfsc1 + c2hA
ud−1gsx,pd , o

n=0

`
s− 1dn

sc1 − c2p
2dn+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd
u dn1.

A thorough investigation reveals, however, that an interpretation of this equation as an asymptotic
expansion inp would be misleading: Thep dependence through the arguments of the external
fieldsAmsx− 1

2Qpd is superficial in that it goes away under the spatial integral. Therefore, one must
develop different tools to tackle the situation. As shown in the Appendix, the operatorRN defined
by the sum of the firstN terms in the above series, forN sufficiently large, differs from the
operatorsc1+c2hA

ud−1 by a trace-class operator only. Hence, for the singular behavior of the cutoff
regularized trace, it suffices to consider this operatorRN.

Inserting the expression for the symbol ofRN into the integral formula for the logarithm, Eq.
s22d, we find

SL
u sAd = − o

n=1

N E
upuøL

d4p

s2pd4E
0

1 ds

s

sn−1

S1 + sSp2 + m2

L0
2 − 1DDn+1E

R4
d4x trNshAs·−s1/2dQpd

u

+ 2ipmDAs·−s1/2dQpd,m
u dn1 + terms finite inL.

Now, for every term in the sum, we can shift thex-integration by −12Qp. After this substitution the
contribution to theL-behavior is apparent: It is only the first four terms that can contribute to
clog

u sAd. Moreover, the resulting expression differs from the correspondingSLsAd, Eq. s25d, solely
in the appearance of the product! in place of the commutative product. As the replacement of the
latter by the Moyal product does not affect the asymptotic behavior in the variablep, we conclude

clog
u sAd =

e2

96p2E
R4

d4x trN Fu,mn ! Fmn
u , s43d

whereFmn
u is defined by

Fmn
u = − iefDAm

u ,DAn
u g.

This proves the claim of Proposition II.2.

VI. CONCLUSION

In the first part of our paper, we considered the regularized determinant of the Klein–Gordon
operatorhA with minimal coupling onR4. For the regularization, we restricted the Hilbert space
trace to run over states of momentum below some cutoffL.

Although similar results have been obtained before, we choose to present here an approach
that consistently uses the pseudodifferential operator methods to prepare the ground for calcula-
tions on a particular noncommutative manifold.

A useful formula for the calculations with symbols of pseudodifferential operatorssCDOd is
given by

sffshAdgsx,pd = fs− p2 + hA + 2ipmDAmd1 s44d

for any function f of the Klein–Gordon operatorhA. This formula originates from a recursion
relation for the symbolsffshAdg. It is to be understood as defining an asymptotic expansion of the
symbol for largep.

Using this asymptotic expansion we could indeed confirm that the cutoff regularized trace
does have an asymptotic expansion in the cutoffL as in Eq.s5d. Although our approach did not
use a manifestly gauge invariant regularization, the term scaling like logL in the regularized trace
of the logarithm of the massive Klein–Gordon operator was found to be gauge invariant. However,
the numerical coefficient in front of this expression differs from that obtained via manifestly gauge
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invariant methods4,11 by a factor of −2, see Eqs.s12d and s14d. This difference can be verified
through a comparison of our approach to heat kernel regularization. It turns out that this argument
does not rely on the particular structure of the operatorhA, cf. the use of the functions dsf ,r ,2td
in Sec. IV D, so we expect it to hold even for more general operators as well. It would be
interesting to understand this feature in more detail. Also, we propose a gauge invariant version of
the cutoff regularization, Eq.s10d, which reproduces the result of Refs. 4 and 11.

Recently, zeta functions have been found to show a pole structure on noncommutative torus7

that differs from the commutative case. It would be interesting to see a similar effect for the Moyal
plane by means of the development in Sec. IV D.

In the second and main part of our work, we considered the generalized Klein–Gordon op-
erator for minimally coupled bosons on the four-dimensional Moyal plane, a particular example
for a noncommutative geometry. The difference to the previous case is that now the external
Yang–Mills fields act on wave functions by the noncommutative Moyal multiplication. This leads
in a natural way to the generalized Klein–Gordon operatorhA

u . As it turns out, the machinery of
CDOs is still applicable, withs44d generalizing to

sffshA
udgsx,pd = fs− p2 + hAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpdm
u d1. s45d

Here,As·−1
2Qpd denotes the external fieldsA shifted by the amount12Qp.

From this formula, one might think that the newp-dependence in the external fields leads to
an improvement in the decay properties of the symbol for largep. This point of view is however
misleading when one wants to draw conclusions for the asymptotic expansion of the regularized
trace: By a change of variables, thep-dependence in the external fields disappears under the
spatial integral of the trace. This fact comes solely from the noncompactness ofR4. It may be
viewed as another manifestation of the UV/IR mixing. A similar effect can be seen for instance in
the example of an infinitely smoothing operator onR that has a nonvanishing trace, see the end of
the fourth section of the Appendix. Therefore, on noncompact manifoldsscommutative or non-
commutatived, arguments linking the asymptotic expansion of the regularized trace of an operator
to the expansion of its symbol must be taken with caution. For our case, we propose to use the
asymptotic expansion inp of the shifted symbol

sffshA
udgsx + 1

2Qp,pd

instead. This proposal is justified rigorously by operator theoretic arguments which show that the
difference between the original operator and a certain truncation of the asymptotic expansion of
the above shifted symbol is trace-class. Hence, it does not contribute to the divergent part of the
regularized trace and we can safely exchange the full symbol by its truncation. This argument can
even be extended to the commutative case, thereby proving that the coefficient of the logL part of
the regularized trace is indeed given by thesnoncompactd Wodzicki residue. The latter observation
now can be used to explain why the expression forclog is a gauge invariant quantity: Since a gauge
transformation conjugates the Klein–Gordon operator by some unitary operator, the fact thatclog is
gauge invariant is equivalent to the vanishing of the Wodzicki residue on commutators.

To conclude, we have seen that the methods ofCDOs are a powerful tool for the investigation
of the case studied here, yet they need to be modified in the described way for the case of the
noncommutative Moyal plane. It would be interesting to see what modifications are necessary to
study the coupling of gravity to the bosons through a varying metric inhA. This is presently under
investigation.
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APPENDIX: DETAILS OF THE COMPUTATIONS

Computation of clog „A…

We are using the following convention for the Klein–Gordon operator:

hA = DA
mDAm = s]m + ieAmds]m + ieAmd = ]m]m + ie]mAm + 2ieAm]m − e2AmAm

= h0 + ie]mAm + 2ieAm − e2AmAm. sA1d

Recall the definition of the symbolsfag of a pseudodifferential operatora:

safdsxd =E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsfagsp,xdfsyd. sA2d

In the computation we need the symbol of the resolvent of the Klein–Gordon operator, i.e., of
the operatorsc1I +c2hAd−1. To determine an asymptotic expansion for this symbol we start with
the following expression:

sc1I + c2hAdafsxd = c1I + c2s]m]m + ie]mAm + 2ieAm]m − e2AmAmd

3E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsfagsp,xdfsyd

=E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsc1I + c2s− p2 − 2eAmpm + ]m]m

+ ie]mAm + 2ieAm]m + 2ipm]m − e2AmAmddsfagsp,xdfsyd. sA3d

Next replacinga by sc1I +c2hAd−1 a we get

sc1I + c2hAdsc1I + c2hAd−1afsxd = afsxd =E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsc1I + c2s− p2 − 2eAmpm

+ ]m]m + ie]mAm + 2ieAm]m + 2ipm]m − e2AmAmdd

3sfsc1I + c2hAd−1agsp,xdfsyd

=E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsfagsp,xdfsyd. sA4d

So we have

sc1I + c2s− p2 − 2eAmpm + ]m]m + ie]mAm + 2ieAm]m − e2AmAm + 2ipm]mddsfsc1I + c2hAd−1agsp,xd

= sfagsp,xd sA5d

which can be written as

032301-19 Yang–Mills action from minimally coupled bosons J. Math. Phys. 46, 032301 ~2005!

Downloaded 09 Feb 2005 to 136.152.180.178. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



sc1I − c2p
2dsfsc1I + c2hAd−1agsp,xd + c2shA + 2ipmDA

mdsfsc1I + c2hAd−1agsp,xd = sfagsp,xd,

sA6d

giving us the recursive relation

sfsc1I + c2hAd−1agsp,xd =
1

c1 − c2p
2sfagsp,xd −

c2

c1 − c2p
2shA + 2ipmDA

mdsfsc1I + c2hAd−1agsp,xd.

sA7d

We can now get the desired asymptotic expansion by settinga=1,sfag=1,

sfsc1I + c2hAd−1gsp,xd , o
n=0

`
s− 1dnc2

n

sc1 − c2p
2dn+1shA + 2ipmDA

mdn1. sA8d

Next we evaluate explicitly the terms contributing to the logarithmically diverging part in the
expansions25d of the effective action. When taking the angular integrals the following formulas
are used:

kpmpnl = 1
4p2hmn,

kpm1pm2pm3pm4l = 1
24p4shm1m2hm3m4 + hm1m3hm2m4 + hm1m4hm2m3d,

where the brackets denote integration over the unit sphere inR4, that is

kfspdl ª
1

2p2E
R4

d4p

s2pd4dsupu − 1dfspd. sA9d

Also the angular integral over an odd number of componentspm is zero. Thes-integrals in the
expansion can be evaluated exactly using the formula

E
0

1

ds
sn−1

s1 + sadn+1 =
1

ns1 + adn sA10d

which holds forRe a.0. The effective action can now be written as

TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD

= −
1

s2pd4o
n=1

` E
1

L

dupuupu3
1

nsp2 + m2dnE
R4

d4xE
S3

dVptrNshA + 2ipmDA
mdn1 + const, sA11d

where the constantsin Ld term arises from the integration of the symbol over the regionupuø1 for
which the asymptotic expansion is not valid.

When expanding the integrand in terms ofp, the leading term is of the orderp3−2n times a
term of order at mostpn coming from the angular integration—so the highest order term is of
orderp3−n. For the terms contributing to logarithmic divergences of the effective action the leading
order must be larger than or equal to −1, so the relevant terms in the expansion above are terms of
order up to four. To find the parts contributing to the logarithmic divergence we derivate the terms
in sA11d with respect toL and then pick the terms proportional to 1/L. We denote byIn the nth
term in the expansion. Writing the expansions of the first four terms explicitly we then have
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]I1

]L
= −

1

8p2

L3

L0
2

L0
2

L2 + m2E
R4

d4x trNhA1 =
1

8p2SL − m2 1

L
+ OS 1

L3DDE
R4

d4x trNhA1,

]I2

]L
= −

1

8p2

L3

2sL2 + m2d2E
R4

d4x trNhA
21 −

1

8p2

L5

sL2 + m2d2E
R4

d4x trNhA1

= −
1

8p2

1

2L
E

R4
d4x trNhA

21 + ¯ +
1

8p2m2 1

L
E

R4
d4x trNhA1 + ¯ ,

]I3

]L
= −

1

8p2

L3

3sL2 + m2d3E
R4

d4x TrNhA
3 +

1

4p2

L5

3sL2 + m2d3E
R4

d4x trNhA
2

+
1

8p2

L5

3sL2 + m2d3E
R4

d4x trNsDA
mhADAmd

= −
1

8p2OS 1

L3D + ¯ +
1

4p2

1

3L
E

R4
d4x trNhA

2 + ¯ +
1

8p2

1

3L
E

R4
d4x trNsDA

mhADAmd,

]I4

]L
= −

1

8p2

L3

4sL2 + m2d4E
R4

d4x trNShA
4 − L2s3hA

3 + hADA
mhADAm + DAmhA

2DAmd +
2

3
L4shA

2

+ DA
nDA

mDAnDAm + DA
mhADAmdD

= −
1

8p2

2

3

1

4L
E

R4
d4x trNshA

2 + DA
nDA

mDAnDAm + DA
mhADAmd + ¯ .

Comparison with fermion calculations

We now compute the traces of the relevant terms in the identity

logs− 14shA + m2d − ies ·Fd = logS 14s− hA + m2d
L0

2 D + logS14 −
ie

− hA + m2s ·FD
+

1

2
FlogS14

− hA + m2

L0
2 D, logS14 −

ie

− hA + m2s ·FDG
+

1

12
SFlogS14

− hA + m2

L0
2 D,FlogS14

− hA + m2

L0
2 D,

logS14 −
ie

− hA + m2s ·FDGG + FlogS14 −
ie

− hA + m2s ·FD,

FlogS14 −
ie

− hA + m2s ·FD, logS14
− hA + m2

L0
2 DGGD + OS 1

L5D .

The commutator terms come from the Baker–Campbell–Hausdorff formula. Terms that fall off at
least as 1/L5 have been suppressed. We find
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TrL logS14S− hA + m2

L0
2 DD = 4 TrL logS− hA + m2

L0
2 D ,

TrL logS14 −
ie

m2 − hA
s ·FD = −E

upuøL

d4p

s2pd4E
R4

d4xo
n=1

`
1

n
trSsF ie

− hA + m2G p s ·FDpn

.

Here,p denotes the product of symbols of twoCDOs which has the asymptotic expansions20d.
Now using the fact that trs ·F=0 and the expansionsA8d for sf1/sc1+c2hAdg, we get

TrL logS14 −
ie

m2 − hA
s ·FD

= −
1

2
E

upuøL

d4p

s2pd4E
R4

d4x trSsF ie

− hA + m2G p s ·F p sF ie

− hA + m2G p s ·FD + OS 1

L5D
=

1

2
E

upuøL

d4p

s2pd4E
R4

d4x
e2

sp2 + m2d2 tr s ·F2 + OS 1

L5D
=

e2

16p2 log LE
R4

d4x tr s ·F2 + OsL0d.

This provides the results needed in the main text, since, as will be shown below, there are no
contributions to the divergent part of the trace that come from the commutator terms. For this, we
expand the logarithm in the first commutator term above which gives us

1

2
TrLFlogS14

− hA + m2

L0
2 D, logS14 −

ie

− hA + m2s ·FDG
=

1

2
TrLFlogS14

− hA + m2

L0
2 D,

− ie

− hA + m2s ·FG +
1

2
TrLFlogS14

s− hA + m2d
L0

2 D,

−
1

2
S ie

− hA + m2s ·FD2G + OS 1

L7D .

The first term on the rhs is zero, so we have

1

2
TrLFlogS 14s− hA + m2d

L0
2 D, logS14 −

ie

− hA + m2s ·FDG
=

1

4
e2 TrLFlogS 14s− hA + m2d

L0
2 D,S 1

− hA + m2s ·FD2G + OS 1

L7D .

Now

sFFlogS14
s− hA + m2d

L0
2 D,S 1

− hA + m2s ·FD2GG = Flog
p2 + m2

L0
2 ,S 1

p2 + m2D2

s ·F2G
*

+ OS 1

L6D
= − i

2pmL0
2

p2 + m2S 1

p2 + m2D2

]mss ·F2d + OS 1

L6D
= OS 1

L5D
so there is no contribution to the divergent part of the trace.
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Next, we turn to the first triple commutator term in the above identity. Counting the powers of
p in the pertinent symbols, the leading term should scale like 1/p4. However, this term contains a
singles ·F which gives zero under the trace trN. Therefore, one must take one more term in the
expansion of

logS14 −
ie

− hA + m2s ·FD .

The resulting expression then is of order 1/p6 and hence can be dropped. Finally the second triple
commutator term can be seen to behave as 1/p6. In conclusion, we have shown that for the
divergent terms of the cutoff regularized trace, all commutator terms can be neglected in the above
identity.

Dependence on the regularization scheme

Computation of the symbol ofusL+hAd. We start with the following sum expression for the
sregularizedd u-function sRef. 9, p. 248, etc.d:

uesxd =
1

e
o

r=−`

`
eivr0

+

x + ivr
=

e−x0+

e−xe + 1
, vr = s2r + 1dp/e, e . 0.

sThis expression is the discretized version of the well-known integral formula

usxd =E
R

dz

2pi

eiz0+

z− ix
.

The latter is regained fore→`.d Differentiation yields

de
sn−1dsxd =

1

e
o

r=−`

`
eivr0

+
s− 1dnn!

sx + ivrdn+1 , n = 1,2,3, . . . ,

for the sn−1dth derivative of thesregularizedd Dirac d-function.
Using the above expression, we have

sfuesL2 + hAdg =
1

e
o

r=−`

`

sF eivr0
+

sL2 + hAd + ivr
G .

We derived the asymptotic expansion for the symbol ofsc1I +c2hAd−1 fsee Eq.sA8dg to be given
by

sfsc1I + c2hAd−1gsp,xd , o
n=0

`
s− 1dnc2

n

sc1 − c2p
2dn+1shA + 2ipmDA

mdn1.

Using this we get

sfuesL + hAdg ,
1

e
o

r=−`

`

o
n=0

`
eivr0

+
s− 1dn

ssL2 − p2d + ivrdn+1shA + 2ipmDAmdn1.

Using the expressions forde
snd in the above expansion we finally have

sfuesL + hAdg , o
n=0

`
1

n!
de

sn−1dsL2 − p2dshA + 2ipmDAmdn1.

Computation of the traces: We can now proceed with the calculation of the trace. From the
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remarks in the main section, we know that we can drop the spatial regulatorf since terms
proportional to the volume ofR4 cancel exactly. We calculate

TrL
hA logS− h0 + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D

= o
n=0

`
1

n!
E

upuù1

d4p

s2pd4E
R4

d4x de
sn−1dsL2 − p2dlogSp2 + m2

L0
2 DtrNshA + 2ipmDAmdn1 + ¯

− TrL logS− h0 + m2

L0
2 D

=E
upuù1

d4p

s2pd4E
R4

d4x uesL2 − p2dlogSp2 + m2

L0
2 DtrN 1 + o

n=1

`
1

n!
E

upuù1

d4p

s2pd4E
R4

d«
sn−1dsL2 − p2d

3logSp2 + m2

L0
2 DtrNshA + 2ipmDAmdn1 + ¯ − TrL logS− h0 + m2

L0
2 D ,

where the dots indicate terms that are uniformly bounded inL. sIn particular, we have split the
p-integral in a part over the unit ball and an integral over the rest. The former contributes to the
finite part.d Now the first term on the right-hand side matches the last one in the limite→`. As
explained in the main text, we are interested in the termsnø5 of the sum above. Expanding the
pertinent terms and performing the angularp-integrals gives

TrL
hA logS− h0 + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D

=
1

8p2E
1

`

dp p3dsL2 − p2dlogSp2 + m2

L0
2 DE

R4
d4x trN hA1 +

1

2

1

8p2E
1

`

dp p3ds1dsL2 − p2d

3logSp2 + m2

L0
2 DE

R4
d4x trNshA

2 − p2hAd1 +
1

6

1

8p2E
1

`

dp p3ds2dsL2 − p2d

3logSp2 + m2

L0
2 DE

R4
d4x trNshA

3 − p2s2hA
2 + DAmhADAmdd1

+
1

24

1

8p2E
1

`

dp p3ds3dsL2 − p2dlogSp2 + m2

L0
2 DE

R4
d4x trNshA

4 − 3p2hA
3

− p2hADAmhADA
m − p2DAmhA

2DAm − p2DAmhADA
mhA + 2

3p4shA
2

+ DA
mDA

nDAmDAn + DA
mhADAmdd1 + ¯ .

We have also taken the limite→`, in which de goes over into the Diracd-function.
Gathering terms with equal spatial integral we obtain
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TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

8p2E
1

`

dp logSp2 + m2

L0
2 DSp3dsL2 − p2d −

1

2
p5ds1dsL2 − p2dDE

R4
d4x trN hA1

+
1

8p2E
1

`

dp logSp2 + m2

L0
2 DS1

2
p3ds1dsL2 − p2d −

1

3
p5ds2dsL2 − p2d

+
1

36
p7ds3dsL2 − p2dDE

R4
d4x trN hA

21 +
1

8p2E
1

`

dp logSp2 + m2

L0
2 D

3S−
1

6
p5ds2dsL2 − p2d +

1

36
p7ds3dsL2 − p2dDE

R4
d4x trN DA

mhADAm1

+
1

8p2E
1

`

dp logSp2 + m2

L0
2 D 1

36
p7ds3dsL2 − p2d

3E
R4

d4x trN DA
mDA

nDAmDAn1 +
1

8p2E
1

`

dp logSp2 + m2

L0
2 DS1

6
p3ds3dsL2 − p2d

−
1

8
p5ds4dsL2 − p2dDE

R4
d4x trN hA

31 + ¯ .

Next we make a change of variablesp2=u to get

TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

8p2E
1

` du

2
logSu + m2

L0
2 DSudsL2 − ud −

1

2
u2ds1dsL2 − udDE

R4
d4x trN hA1

+
1

8p2E
1

` du

2
logSu + m2

L0
2 DS1

2
uds1dsL2 − ud −

1

3
u2ds2dsL2 − ud

+
1

36
u3ds3dsL2 − udDE

R4
d4x trN hA

21 +
1

8p2E
1

` du

2
logSu + m2

L0
2 D

3S−
1

6
u2ds2dsL2 − ud +

1

36
u3ds3dsL2 − udDE

R4
d4x trN DA

mhADAm1

+
1

8p2E
1

` du

2
logSu + m2

L0
2 D 1

36
u3ds3dsL2 − udE

R4
d4x trN DA

mDA
nDAmDAn1

+
1

8p2E
0

` du

2
logSu + m2

L0
2 DS1

6
uds2dsL2 − ud −

1

8
u2ds3dsL2 − udDE

R4
d4x trN hA

31 + ¯ .

Now by integrating by parts and noting that

dk

dukdsL2 − ud = s− 1dkdskdsL2 − ud

we have
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TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

16p2E
1

`

du logSu + m2

L0
2 DdsL2 − udus1 − 1dE

R4
d4x trN hA1

+
1

16p2E
1

`

du logSu + m2

L0
2 DdsL2 − udS1

2
−

2

3
+

1

6
DE

R4
d4x trN hA

21

+
1

16p2E
1

`

du logSu + m2

L0
2 DdsL2 − udS−

1

3
+

1

6
DE

R4
d4x trN DA

mhADAm1

+
1

16p2E
1

`

du logSu + m2

L0
2 D1

6
dsL2 − udE

R4
d4x trN DA

mDA
nDAmDAn1 + ¯

= −
1

16p2

1

6
E

1

`

du logSu + m2

L0
2 DdsL2 − udE

R4
d4x Tr DA

mhADAm1 +
1

16p2

1

6

3E
1

`

du logSu + m2

L0
2 DdsL2 − udE

R4
d4x trN DA

mDA
nDAmDAn1 + ¯

= −
1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trN DA

mhADAm1

+
1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trN DA

mDA
nDAmDAn1 + ¯ .

Recalling that

trNsDA
mhADAm − DA

nDA
mDAnDAmd =

e2

2
trN FmnFmn

we finally get

TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D = −

1

2

1

96p2 log
L

L0
E

R4
trN FmnFmn + ¯ ,

sA12d

where again the dots indicate terms that are bounded or polynomial inL.

Computation on the Moyal plane

General remarks: The symbol of the operatorc1+c2hA
u is given by

ssx,pd ª sfc1 + c2hA
ugsx,pd

= − p2 − 2epmAmsx − 1
2Qpd + ies]mAmdsx − 1

2Qpd − e2sAm!Amdsx − 1
2Qpd.

From this expression, it is clear that one can bounds from below by a positive constant and from
above by a multiple ofp2 for p2 greater than a certain constant. Furthermore, the derivatives ofs
fall off as long asx is confined to some compact set. Therefore, by Ref. 17, corollary 5.1, there is
a CDO that invertssc1+c2hA

ud up to some infinitely smoothing operator.
Derivation of the recursion relation: As in the first section of this appendix, we start with the

following identity for s:
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csxd = sc1 + c2hA
udsc1 + c2hA

ud−1csxd

= sc1 + c2hA
ud E d4p

s2pd4 E d4y eipsx−ydssx,pdcsyd

=E d4p

s2pd4 E d4ysc1 + c2s]m]m + ies]mAmd! + 2ieAm!]m − e2Am!Am!ddseipsx−ydsfsc1

+ c2hA
ud−1gsx,pddcsyd.

To continue we need the following formula:

eipsx−ydssx,pd = fss· + 1
2Qp,pd!eips·−ydxs·dgsxd,

which can be proved as follows. Using the integral expression for the star product,

sf!gdsxd ª s2pd−4E E eijsx−ydfSx −
1

2
QjDgsydd4y d4j,

we have for a Schwartz test functionx

FsS· +
1

2
Qp,pD!eips·−ydxs·dGsxd =

1

s2pd4 E E d4j d4zsSx −
1

2
uj +

1

2
Qp,pDeipsz−ydxszdeijsx−zd

=
1

s2pd4 E E d4j d4zsSx −
1

2
uj +

1

2
Qp,pDxszde−izsj−pdeisjx−pyd

=
1

s2pd2 E d4j sSx −
1

2
Qsj − pd,pDx̂sj − pdeisjx−pyd

= eipsx−yd 1

s2pd2 E d4j̃ sSx −
1

2
Qj̃,pDx̂sj̃dei j̃x.

Now in the limit x→1, the Fourier transformx̂ approximates the delta function. Therefore, in this
limit, we obtain the claimed identity. Using this formula in the expression forcsxd we get

csxd =E E d4p d4y

s2pd4 sc1 + c2s]m]m + ies]mAmd! + 2ieAm!]m − e2Am!Am!ddsssx,pdeipsx−yddcsyd

=E E d4p d4y

s2pd4 sc1 + c2s]m]m + ies]mAmd! + 2ieAm!]m − e2Am!Am!dd

3SsS· +
1

2
Qp,pD!eips·−ydDsxdcsyd

=E E d4p d4y

s2pd4 Fsc1 + c2sh0 + 2ipm]m − p2 + ies]mAmd! − 2epmAm!

+ 2ieAm!]m − e2Am!Am!ddsS· +
1

2
Qp,pDG!eips·−ydsxdcsyd

=E E d4p d4y

s2pd4 sc1 + c2p
2 + c2shAs·−s1/2dQpd

u + 2pmDAs·−s1/2dQpd,m
u ddss·,pdeipsx−ydcsyd,

which gives us

1 = sc1 − c2p
2 + c2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u ddsfsc1 + c2hA

ud−1gsx,pd

or
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sfsc1 + c2hA
ud−1gsx,pd =

1

c1 − c2p
2 −

c2

c1 − c2p
2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd
u dsfsc1 + c2hA

ud−1g

3sx,pd. sA13d

Derivation of the asymptotic expansion: We setRªsc1+c2hA
ud−1. As −hA

u is a positive opera-
tor, R is bounded forc1·c2,0. Indeed, from

E
R4

d4x c̄sxdsA!wdsxd =E
R4

d4xsc̄!A!wdsxd =E
R4

d4xsc̄!Adsxdwsxd,

which holds forc ,A,wPL2sR4d sRef. 10, lemma 2.10d and Ā!c=c̄!A we conclude

kc,A!wl = kĀ!c,wl

and hencesDAm
u d†=−DAm

u . Therefore,

kw,− hA
uwl = o

m=1

4

kDAm
u w,DAm

u wl ù 0.

In our case, we havec1=1−s+ssm2/L0
2d and c2=−s/L0

2 for 0øsø1 which meets the above
requirement ofc1·c2,0 for 0,sø1. Fors=0, we havec2=0, c1Þ0, andR is a multiple of the
identity.

Next, letRN be theCDO defined by the symbol

sfRNgsx,pd = o
n=0

N
s− c2dn

sc1 − c2p
2dn+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dn1.

We will show that the differenceR−RN is a trace-class operator.
For this, we first applyc1+c2hA

u from the left to obtain

sc1 + c2hA
udsR− RNd = 1 − sc1 + c2hA

udRN.

Here, 1 denotes the identity operator. We will compute the symbol of theCDO on the right-hand
side of this equation. On the level of symbols, multiplication ofRN by c1+c2hA

u from the left
amounts to the application ofc1+c2s−p2+hAs·−s1/2dQpd

u +2ipmDAs·−s1/2dQpd,m
u d to sfRNg, cf. the deri-

vation of the recursion relation above. Hence, we find

sf1 − sc1 + c2hA
udRNgsx,pd = 1 − sc1 + c2s− p2 + hAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u ddsfRNgsx,pd

= 1 − sc1 − c2p
2dsfRNg − c2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dsfRNg

= − o
n=1

N
s− c2dn

sc1 − c2p
2dnshAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dn1

+ o
n=0

N
s− c2dn+1

sc1 − c2p
2dn+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dn+11

=
s− c2dN+1

sc1 − c2p
2dN+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dN+11.

Let rN be defined by the last expression,
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sfrNgsx,pd ª
s− c2dN+1

sc1 − c2p
2dN+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dN+11.

We will show thatrN is a trace-class operator for sufficiently largeN. Expanding the power of
operators in the symbolsfrNg yields terms of the form

const3
1

sc1 − c2p
2dN+1 3 f1! ¯ !fkSx −

1

2
QpD ,

k=1, . . . ,2sN+1d, the f i denoting the external fieldsAm or derivatives thereof.fWe have used the
fact thatsfs·−1

2Qpd!gs·−1
2Qpddsxd=sf !gdsx− 1

2Qpd.g
As Am is in P and of order −2−e, Moyal multiplication by it increases the decay property of

thex-dependent part by 2. On the other hand, differentiation increases it only by 1. Therefore, the
leading term of the above type will be the one whereN derivatives ofDAs·−s1/2dQpd,m

u hit a singleAm.
The resulting term can be bounded from above by

const3
1

s1 + p2dN+1 3 sp2dN/2 3
1

s1 + sx − 1
2Qpd2ds4+e+Nd/2

which is integrable inx–p space for sufficiently largeN.
Application from the left of the bounded operatorR to rN does not change the property of

being trace-class. On the other hand, we find

RrN = Rsc1 + c2hA
udsR− RNd = R− RN.

To summarize, if we are interested in the singular behavior of the cutoff regularized trace ofR, we
may use the symbolsfRNg for N sufficiently large in the integral formula of the trace. This
amounts to the iteration of the recursion relationsA13d N times.

Remarks: It is easy to see that a blind application of the machinery ofCDO leads astray. As
already mentioned in the main text, the symbol of the operatorf! is given by

sff!gsx,pd = fsx − 1
2Qpd.

Hence,f! is an infinitely smoothing operator iff is a Schwartz test function. In other words, the
noncommutative Klein–Gordon operatorhA

u differs from the free operatorh0 by an infinitely
smoothing operator,

sfhA
ugsx,pd = − p2 − 2epmAmsx − 1

2Qpd + ies]mAmdsx − 1
2Qpd − e2sAm!Amdsx − 1

2Qpd

= sfh0gsx,pd + smoothing.

One might therefore expect that the dependence on the fieldsA of the resolventR is in the part that
is not seen by an asymptotic expansion inp and hence does not contribute to the divergent
behavior of the trace. ForCDOs onnoncompactmanifoldsM this line of reasoning must be taken
with caution, since there might be additional divergent terms from thex-integration in the trace
integral. This is nicely illustrated by the above computation and the following example. Consider
the function

fsx,pd = e−x2e−p2
−s1/4dp2

,

wherex andp are one-dimensional variables. Clearly

u]p
a]x

bfsx,pdu ø CK,a,be−s1/4dp2
, x P K , R compact,p P R,

hencef defines an infinitely smoothing operator. On the other hand,
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E
R

dx fsx,pd = Îpes1/4dp2
,

and the operatorf does have a diverging trace. Note that in this example, it is the noncompactness
that yields the surprise. We conclude that even in the commutative case, the correspondence
between the logarithmically divergent part of the trace and the residue needs some additional
justification.

In the above calculation, however, thep–x mixing in the arguments of the fieldsAm—which
originates from the noncommutativity of the Moyal plane—makes it impossible to distinguish
between the asymptoticp-expansion and ansinfinitely smoothingd remainder. There, additional
arguments are imperative. Observe, however, that our lines of reasoning above can be taken over
to the commutative case, thereby solving the raised objection.
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